Skip to main content

Perspectives of Desorption Ionization Methodologies in Nucleic Acid Chemistry

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 280))

Abstract

The fundamental role of mass spectrometric methodologies in nucleic acid chemistry is described. After an overview on the most important results achieved by conventional ionization systems (E.I., C.I. and F.D.), the physico-chemical aspect of desorption ionization methodologies (SIMS, FAB and CFPD) are discussed. The principles of structure determination by FAB of nucleosides and oligonucleotides are discussed with reference to a number of target molecules of relevant importance in genetic engeneering applications. MS/MS methodologies afford selective information on the reactivity of gaseous DNA strands characterized by a “zwitterionic” structure. Hydrogen-bonded nucleoside pairs have been produced by FAB and their structure have been determined in a non-interacting environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Saenger, “Principles of Nucleic Acid Structure”, Springer, New York (1984).

    Google Scholar 

  2. H. R. Morris, Ed., “Soft Ionization Biological Mass Spectrometry”, Heyden, London (1981);

    Google Scholar 

  3. P. A. Lyon, Ed., “Desorption Mass Spectrometry”, American Chemical Society, Washington D.C.; ACS Symp. Ser., 291 (1985).

    Google Scholar 

  4. S. J. Pachuta and R.G. Cooks, Chem. Rev., 87, 647–669 (1987).

    Article  CAS  Google Scholar 

  5. C. Fenselau and R. J. Cotter, Chem. Rev., 87, 501–512 (1987).

    Article  CAS  Google Scholar 

  6. B. Sundqvist and R. D. Macfarlane, Mass Spectrometry Reviews, 4, 421–460 (1985).

    Article  CAS  Google Scholar 

  7. K. Levsen, “Fundamental Aspects of Organic Mass Spectrometry”, Verlag Chemie, Weinheim (1978).

    Google Scholar 

  8. A. G. Harrison, “Chemical Ionization Mass Spectrometry”, CRC Press, Boca Raton (1984).

    Google Scholar 

  9. H. D. Beckey, “Principles of Field Ionization and Field Desorption Mass Spectrometry”, Pergamon, Oxford (1977).

    Google Scholar 

  10. C. Hignite, in “Biochemical Applications of Mass Spectrometry”, G. R. Waller and O. C. Dermer, eds., 1st Suppl. Vol., Chapter 16, pp. 527–566, Wiley, New York (1980).

    Google Scholar 

  11. H. Budzikiewicz, Pure and Appl. Chem., 50, 159 (1978).

    Article  CAS  Google Scholar 

  12. J. L. Wiebers, in “High Performance Mass Spectrometry: Chemical Applications”, M. L. Gross ed., American Chemical Society, Washington D. C. (1978).

    Google Scholar 

  13. K. Jankowski, J. R. Jocelyn Paré and R. H. Wightman, in “Advances in Heterocyclic Chemistry”, A. Katrisky ed., Vol. 39, pp. 79–116, Academic Press, New York (1986).

    Google Scholar 

  14. S. K. Sethi, S. P. Gupta, E. E. Jenkins, C. W. Whitehead, L. B. Townsend and J. A. McCloskey, J. Am. Chem. Soc., 104, 3349 (1982).

    Article  CAS  Google Scholar 

  15. H. Pang, K. H. Schram, D. L. Smith, S. P. Gupta, L. B. Townsend and J. A. McCloskey, J. Org. Chem., 47, 3923 (1982).

    Article  CAS  Google Scholar 

  16. M. S. Wilson and J. A. McCloskey, J. Am. Chem. Soc., 97, 3436 (1975).

    Article  PubMed  CAS  Google Scholar 

  17. E. L. Esmans, Y. Luyten and F. C. Alderweireldt, Biomedical Mass Spectrom., 10, 347 (1983).

    Article  CAS  Google Scholar 

  18. D. J. Ashworth, W. M. Baird, C. Chang, J. D. Ciupek, K. L. Busch and R. G. Cooks, Chem. Biol. Interact., 57, 295 (1986).

    Article  PubMed  Google Scholar 

  19. H. R. Schulten and H. M. Schiebel, Nucleic Acid Res., 3, 2027 (1976).

    PubMed  CAS  Google Scholar 

  20. H. J. Veith, Tetrahedron, 33, 2825 (1977).

    Article  CAS  Google Scholar 

  21. M. Linscheid and J. L. Burlingame, Org. Mass Spectrom., 18, 245 (1983).

    Article  CAS  Google Scholar 

  22. H. Budzikiewicz and M. Linscheid, Biomedical Mass Spectrom., 4, 103 (1977).

    Article  CAS  Google Scholar 

  23. H. Kasai, Z. Ohashi, F. Harada, S. Nishimura, N. J. Oppenheimer, P. F. Crain, J. G. Liehr, D. L. von Minden and J. A. McCloskey, Biochemistry, 14, 4198 (1975).

    Article  PubMed  CAS  Google Scholar 

  24. K. L. Busch and R. G. Cooks, Anal. Chem., 55, 38A (1983).

    Article  Google Scholar 

  25. F. W. McLafferty, “Tandem Mass Spectrometry”, Wiley, New York (1983).

    Google Scholar 

  26. A. Benninghoven, Surf. Sci., 35, 427 (1973).

    Article  CAS  Google Scholar 

  27. R. D. Macfarlane and D. F. Togerson, Science, 191, 920 (1976).

    Article  PubMed  CAS  Google Scholar 

  28. M. Barber, R. S. Bordoli, R. D. Sedgwick, A. N. Tyler, J. Chem. Soc., Chem. Commun., 325 (1981).

    Google Scholar 

  29. C. B. Reese and G. Sindona, unpublished results.

    Google Scholar 

  30. Int. J. Mass Spectrom. Ion Phys., special issue, Vol.53 (1983).

    Google Scholar 

  31. P. J. Derrick and B. U. R. Sundqvist eds., “Gaseous Ions from Involatile, Thermally-sensitive Materials: Energetics and Mechamisms”, Int. J. Mass Spectrom. Ion Processes, special issue, Vol. 78 (1987).

    Google Scholar 

  32. G. Falcone, Surf. Sci., 187, 212 (1987).

    Article  CAS  Google Scholar 

  33. G. Falcone, Z. Sroubek, G. Sindona and N. Uccella, Int. J. Mass Spectrom. Ion Processes, 83, 223 (1988).

    Article  CAS  Google Scholar 

  34. E. De Pauw, Mass Spectrometry Reviews, 5, 191–212 (1986).

    Article  Google Scholar 

  35. A. Liguori, G. Sindona and N. Uccella, J. Am. Chem. Soc., 108, 7488 (1986).

    Article  CAS  Google Scholar 

  36. R. G. Cooks and K. L. Busch, Int. J. Mass Spetrom. Ion Processes, 57, 75 (1985).

    Google Scholar 

  37. B. Divisia-Blohorn, G. Kyriakakou and J. Ulrich, Org. Mass Spectrom., 20, 463 (1985).

    Article  CAS  Google Scholar 

  38. S. S. Sethi, C. C. Nelson, J. A. McCloskey, Anal. Chem., 56, 1977 (1984).

    Article  Google Scholar 

  39. D. H. Williams, A. F. Findeis, S. Naylor and B. W. Gibson, J. Am. Chem. Soc., 109, 1980 (1987).

    Article  CAS  Google Scholar 

  40. F. W. McLafferty, Acc. Chem. Res., 13, 33 (1980).

    Article  CAS  Google Scholar 

  41. R. G. Cooks, J. H. Beynon, R. M. Caprioli and G. R. Lester, “Metastable ions”, Elsevier, Amsterdam (1973).

    Google Scholar 

  42. I. Howe, D. H. Williams and R. D. Bowen, “Mass Spectrometry. Principles and Applications”, MacGraw Hill, London (1981).

    Google Scholar 

  43. K. Levsen and H. Schwarz, Angew. Chem. Int. Ed., 15, 509 (1976).

    Article  Google Scholar 

  44. B. L. Bricker and D. H. Russell, J. Am. Chem. Soc., 108, 6174 (1986).

    Article  CAS  Google Scholar 

  45. P. Vainiotalo, H. I. Kenttamaa, Md. A. Mabud, J. R. O’Lear e R. G. Cooks, J. Am. Chem. Soc., 109, 3187 (1987).

    Article  CAS  Google Scholar 

  46. K. Biemann and S. A. Martin, Mass Spectrometry Reviews, 6, 40–55 (1987).

    Article  Google Scholar 

  47. A. Liguori, G. Sindona and N. Uccella, “Int. Symposium on Mass Spectrometry in the Health and Life Sciences”, San Francisco (U.S.A.), September 9–13 (1984).

    Google Scholar 

  48. A. Eicke, W. Sichtermann and A. Benninghoven, Org. Mass Spectrom., 15, 289 (1980).

    Article  CAS  Google Scholar 

  49. C. J. McNeal and R. D. Macfarlane, J. Am. Chem. Soc., 103, 1609 (1981).

    Article  CAS  Google Scholar 

  50. G. Sindona, N. Uccella and K. Weclawek, J. Chem. Res. (S), 184 (1982).

    Google Scholar 

  51. L. Grotjahn, R. Frank and H. Bloecker, Nucleic Acid Res., 10, 4671 (1982).

    Article  PubMed  CAS  Google Scholar 

  52. V. T. Vu, C. C. Fenselau and O. M. Colvin, J. Am. Chem. Soc., 103, 7362 (1981)

    Article  CAS  Google Scholar 

  53. G. Puzo, J. C. Promé, J. P. Macquet and I. A. S. Lewis, Biomedical Mass Spectrom., 9, 552 (1982).

    Article  CAS  Google Scholar 

  54. L. Grotjahn, R. Frank, G. Heisterberger-Moutsis and H. Bloecker, Tetraherdon Lett., 25, 5373 (1984).

    Article  CAS  Google Scholar 

  55. J. Ulrich, A. Guy, D. Molko and R. Teoule, Org. Mass Spectrom., 19, 588 (1984).

    Article  Google Scholar 

  56. F. Greco, A. Liguori, G. Sindona and N. Uccella, Adv. Mass Spectrom., 10B, 1455 (1985).

    Google Scholar 

  57. L. R. Phillips, K. A. Gallo, G. Zon, W. J. Stec and B. Uznanski, Org. Mass Spectrom., 20, 781 (1985).

    Article  CAS  Google Scholar 

  58. A. Viari, J. P. Ballini, P. Vigny, C. Blonski, P. Dousset and D. Shire, Tetrahedron Lett., 28, 3349 (1987).

    Article  CAS  Google Scholar 

  59. A. Wolter, C. Moehringer, H. Koester and W. A. Koenig, Biomedical and Environmental Mass Spectrom., 14, 111 (1987).

    Article  CAS  Google Scholar 

  60. C. B. Reese, Tetraheron, 34, 3143 (1978).

    Article  CAS  Google Scholar 

  61. M. J. Gait, “Oligonucleotide Synthesis: a Practical Approach”, IRL Press, Oxford (U.K.) (1984).

    Google Scholar 

  62. A. Liguori, E. Perri, G. Sindona and N. Uccella, Tetrahedron, 44, 229 (1988).

    Article  CAS  Google Scholar 

  63. A. Omodei-Salé,G. Sindona, D. Sola and N. Uccella, J. Chem. Res. (S), 51 (1984).

    Google Scholar 

  64. A. Liguori, G. Sindona and N. Uccella, unpublished results.

    Google Scholar 

  65. A. Liguori, G. Sindona and N. Uccella, J. Chem. Soc. Perkin 2, 1661 (1988).

    Google Scholar 

  66. D. H. Williams amd S. Naylor, J. Chem. Soc. Chem. Commun., 1408 (1987).

    Google Scholar 

  67. P. B. Caruso, G. Sindona, A. Liguori and N. Uccella, Gazz. Chim. Ital., 118, 253 (1988).

    CAS  Google Scholar 

  68. P. B. Caruso, G. Sindona, A. Liguori and N. Uccella, Synth. Commun., 18, 841 (1988).

    Article  CAS  Google Scholar 

  69. N. Neri, G. Sindona and N. Uccella, Gazz. Chim. Ital., 113, 197 (1983).

    CAS  Google Scholar 

  70. M. Panico, G. Sindona and N. Uccella, J. Am. Chem. Soc., 105, 5607 (1983);

    Article  CAS  Google Scholar 

  71. D. B. Lerner and D. R. Kearns, Biopolimers, 20, 803 (1981)

    Article  CAS  Google Scholar 

  72. A. Liguori, G. Sindona and N. Uccella, Biomedical and Environmental Mass Spectrom., 16, 451 (1988).

    Article  CAS  Google Scholar 

  73. S. A. McLuckey, D. Cameron and R. G. Cooks, J. Am. Chem. Soc., 103, 1313 (1981).

    Article  CAS  Google Scholar 

  74. G. Bojesen, J. Am. Chem. Soc., 109, 5557 (1987).

    Article  CAS  Google Scholar 

  75. D. Cameron and R. G. Cooks, J. Am. Chem. Soc., 101, 3162 (1979).

    Article  CAS  Google Scholar 

  76. A. Liguori, G. Sindona and N. Uccella, submitted for publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sindona, G. (1989). Perspectives of Desorption Ionization Methodologies in Nucleic Acid Chemistry. In: Theophanides, T. (eds) Spectroscopy of Inorganic Bioactivators. NATO ASI Series, vol 280. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2409-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2409-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7585-5

  • Online ISBN: 978-94-009-2409-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics