Skip to main content

Resuspension, ephemeral mud blankets and nitrogen cycling in Laholmsbukten, south east Kattegat

  • Conference paper
Sediment/Water Interactions

Part of the book series: Developments in Hydrobiology ((DIHY,volume 50))

Abstract

Primary production in coastal waters is generally nitrogen-limited due to efficient nitrogen sink pathways, which therefore limit further eutrophication. In this context, the significance of ephemeral mud blankets at shallow depth has been characterised using a simple computational box model. Bed materials from several synoptic grab-sample surveys in Laholmsbukten, a shallow embayment of the Kattegat Sea, were analysed. Sediment trap and current meter data provided an assessment of fine material transport; the frequency of loose mud resuspension was estimated to vary between three and ten events per month in the spring, depending on the wind conditions.

Mud blankets appear to be deposited following major spring and fall phytoplankton blooms, they are only a few centimetres thick, they are composed mainly of pelletized organic material and detritus and they have a high water content (80% wet weight) and nitrogen content (0.5% dry weight). In the course of export from the bay, the muds undergo continuous resuspension, redeposition and biological breakdown. In one September day, the amount of particulate nitrogen redeposited in sediment traps was of equivalent magnitude to the entire mud blanket deposit (5 g N/m−2 or a 4 mm deposit as a bay-wide mean). The presence of mud blankets is believe to control the nitrogen budget and water quality in the bay. A simple model proved compatible with observed mud blanket presence and rates of denitrification. Calm conditions are conducive to the loss of bound nitrogen and free oxygen within the bay as a result of prolonged denitrification and pelagic and benthic nitrogen regeneration. If fine particulates are rapidly exported from shallow bottoms, as in windy periods, the water quality of the entire Kattegat Sea is likely to be impaired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalderink, R. H., L. Lijklema, J. Breukelman, W. van Raaphorst & A. G. Brinkman, 1984. Quantification of wind induced resuspension in a shallow lake. Wat. Sci. Tech. 17: 903–914.

    Google Scholar 

  • Andersen, J. M., 1974. Nitrogen and phosphorus budgets and the role of sediments in six shallow Danish lakes. Arch. Hydrobiol. 74: 528–550.

    Google Scholar 

  • Axelsson, V. & L. Håkanson, 1971. The connection between mercury distribution and sedimentological conditions in Ekoln. Part 1. Aim and methods (in Swedish). UNGI, Uppsala Univ., Report no. 11, 35 pp.

    Google Scholar 

  • Berglund, B., 1986. Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester, 896 pp.

    Google Scholar 

  • Blackburn, T. H. & K. Henriksen, 1983. Nitrogen cycling in different types of sediments from Danish waters. Limnol. Oceanogr. 28: 477–493.

    Article  CAS  Google Scholar 

  • Bloesch, J. & N. M. Burns, 1980. A critical review of sedimentation trap technique. Schweiz Z. Hydrobiol. 42: 15–55.

    Article  Google Scholar 

  • Brydsten, L., 1988. A model for determining resuspension of sediments due to wave action. Hydrobiologia (in press).

    Google Scholar 

  • Christensen, J. P., W. M. Smethie, Jr. & A. H. Devol, 1987. Benthic nutrient regeneration and denitrification on the Washington continental shelf. Deep-Sea Res. 34: 1027–1047.

    Article  CAS  Google Scholar 

  • Davies, J. M., 1975 Energy flow through the benthos in a Scottish sea loch. Mar. Biol. 31: 353–362.

    Article  CAS  Google Scholar 

  • Eadie, B. J., R. L. Chambers, W. S. Gardner & G. L. Bell, 1984. Sediment trap studies in Lake Michigan: resuspension and chemical fluxes in the southern basin. J. Great Lakes Res. 10: 307–321.

    Article  CAS  Google Scholar 

  • Floderus, S., 1989a. The linkage between resuspension and nitrogen sinks of coastal waters. Manuscript.

    Google Scholar 

  • Floderus, S., 1989b. Sediment sampling evaluated with a new weighting function and index of reliability. Hydrobiologia (in press).

    Google Scholar 

  • Gardner, W. D., J. B. Southard & C. D. Hollister, 1985. Sedimentation, resuspension and chemistry of particles in the Northwest Atlantic. Mar. Geol. 65: 199–242.

    Article  CAS  Google Scholar 

  • Håkanson, L., 1977. The influence of wind, fetch and water depth on the distribution of sediments in Lake Vänern, Sweden. Can. J. Earth Sci. 14: 397–412.

    Article  Google Scholar 

  • Håkanson, L., 1984. Suspension and calibration of a sediment trap. Schweiz. Z. Hydrobiol. 46: 171–175.

    Article  Google Scholar 

  • Håkanson, L. & S. Floderus, 1985. Bottenlinser och närsaltsdynamik i Laholmsbukten (in Swedish with English abstract). Vatten 41: 20–28.

    Google Scholar 

  • Hargrave, B. T. & S. Taguchi, 1978. Origin of deposited material sedimented in a marine bay. J. Fish Res. Bd Can. 35: 1604–1613.

    Article  CAS  Google Scholar 

  • Jordan, T. E. & I. Valiela, 1983. Sedimentation and resuspension in a New England salt marsh. Hydrobiologia 98: 179–184.

    Article  Google Scholar 

  • Kamp-Nielsen, L., 1983. Sediment-Water exchange models. In S. E. Jørgensen (ed.), Application of Ecological Modelling in Environmental Management, Part A. Elsevier, Amsterdam: 387–420.

    Google Scholar 

  • Kemp, W. M. & W. R. Boynton, 1984. Spatial and temporal coupling of nutrient inputs to estuarine primary production: the role of particulate transport and decomposition. Bull. mar. Sci. 35: 522–535.

    Google Scholar 

  • Kenney, B. C., 1985. Sediment resuspension and currents in Lake Manitoba. J. Great Lakes Res. 11: 85–96.

    Article  CAS  Google Scholar 

  • McLachlan, A., 1980. Exposed sandy beaches as semi-closed ecosystems. Mar. environ. Res. 4: 59–63.

    Article  Google Scholar 

  • Mörner, N.-A., 1969. The quaternary history of the Kattegat Sea and the Swedish west coast. Deglaciation, shore level displacement, chronology, isostasy and eustasy. Swedish Geological Survey (SGU), Ser. C, nr. 640, 487 pp.

    Google Scholar 

  • Nixon, S. W., 1981. Remineralization and nutrient cycling in coastal marine ecosystems. In B. J. Neilson and L. E. Cronin (eds.), Estuaries and Nutrients. Humana Press, Clifton, New Jersey: 3–24.

    Google Scholar 

  • Rhoads, D. C., 1974. Organism-sediment relations on the muddy sea-floor. Oceanogr. Mar. Biol. Annu. Rev. 12: 263–300.

    CAS  Google Scholar 

  • Rhoads, D. C., K. Tenore & M. Browne, 1975. The role of resuspended bottom mud in nutrient cycles of shallow embayments. In L. E. Cronin (ed.), Estuarine Research, Volume 1. Chemistry, Biology and the Estuarine System. Academic Press, New York: 563–579.

    Google Scholar 

  • Rhoads, D. C., J. Y. Yingst & W. J. Ullman, 1978. Seafloor stability in central Long Island Sound: Part I. Temporal changes in erodibility of fine-grained sediment. In M. L. Wiley (ed.), Estuarine Interactions. Academic Press, New York: 221–244.

    Google Scholar 

  • Robertsson, A.-M., 1986. Structural analysis of samples from Laholmsbukten (in Swedish). Swedish Geological Survey (SGU), Dnr 308–222/86, 10 pp. (mimeo).

    Google Scholar 

  • Rosenberg, R., 1985. Eutrophication — the future marine coastal nuisance? Mar. Pollut. Bull. 16: 227–231.

    Article  CAS  Google Scholar 

  • Rosenberg, R. (ed.), 1986. The state of eutrophication in the Kattegat (in Swedish). Swedish Environmental Protection Board (SNV) Report 3272, 149 pp.

    Google Scholar 

  • Rydberg, L., 1982. Nutrients and hydrography in the southeastern Kattegat and Laholmsbukten and their significance for the biological production (in Swedish). Vatten 38: 436–450.

    CAS  Google Scholar 

  • Rydberg, L., 1983. Västkustens hydrografi och närsalttransporter. Trender och klimatberoende i Östersjön och västerhavet (Swedish with English abstract). Department of Oceanography, University of Gothenburg, Red Series 6, 29 pp.

    Google Scholar 

  • Rydberg, L. & J. Sundberg, 1984. On the supply of nutrients to the Kattegat. Department of Oceanography, University of Gothenburg, Report 44, 17 pp.

    Google Scholar 

  • Rydberg, L. & J. Sundberg, 1988. An estimate of oxygen consumption and denitrification in coastal waters of the Swedish west coast, using indirect methods. Estuar., Coast. Shelf Sci. 26: 269–284.

    Article  CAS  Google Scholar 

  • Seitzinger, S. & S. W. Nixon, 1985. Eutrophication and the rate of denitrification and N2O production in coastal marine sediments. Limnol. Oceanogr. 30: 1332–1339.

    Article  CAS  Google Scholar 

  • Sly, P. G., 1978. Sedimentary processes in lakes. In A. Lerman (ed.), Lakes: Chemistry, Geology, Physics. Springer-Verlag, Heidelberg: 65–89.

    Google Scholar 

  • Svansson, A., 1984. Hydrographic features of the Kattegat. Rapp. P.-v. Réun. Cons. int. Explor. Mer 185: 78–90.

    Google Scholar 

  • Tenore, K. R., L. F. Boyer, J. Corral, C. Garcia-Fernandez, N. Gonzales, E. G. Gurrian, R. B. Hanson, J. Iglesias, M. Krom, E. Lopez-Jamar, J. McClain, M. Pamatmat, A. Perez, D. C. Rhoads, R. M. Rodriguez, G. Santiago, J. Tietjen, J. Westrich & H. L. Windom, 1982. Coastal upwelling in the Rias Bajas, NW Spain: Contrasting the benthic regimes of the Rias de Arosa and de Muros. J. mar. Res. 40: 701–772.

    CAS  Google Scholar 

  • Walker, T. A., 1981. Dependence of phytoplankton chlorophyll on bottom resuspension in Cleveland Bay, northern Queensland. Australian J. mar. Freshwater Res. 32: 981–986.

    Article  CAS  Google Scholar 

  • Wetzel, R. L. & R. G. Wiegert, 1983. Ecosystem simulation models: Tools for the investigation and analysis of nitrogen dynamics in coastal and marine ecosystems. In R. J. Carpenter and D. G. Capone (eds.), Nitrogen in the Marine Environment. Academic Press, New York: 869–892.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this paper

Cite this paper

Floderus, S., Håkanson, L. (1989). Resuspension, ephemeral mud blankets and nitrogen cycling in Laholmsbukten, south east Kattegat. In: Sly, P.G., Hart, B.T. (eds) Sediment/Water Interactions. Developments in Hydrobiology, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2376-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2376-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9007-0

  • Online ISBN: 978-94-009-2376-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics