Skip to main content

The potential in fluvial geomorphology of a new mineral identification technology (QEM7*SEM)

  • Conference paper
Sediment/Water Interactions

Part of the book series: Developments in Hydrobiology ((DIHY,volume 50))

  • 363 Accesses

Abstract

The mineralogical signatures of fluvial sediments can be used to identify source areas and the degree of mixing of sediments from different fluvial and non-fluvial sources. The potential use of these signatures has not been fully realised because of uncertainties that result from mineralogical change as a result of sorting and weathering and the considerable time and expense involved in conventional optical mineral identification. A new quantitative mineral identification system QEM*SEM (Quantitative Evaluation of Materials by Scanning Electron Microscope), using an image analysis system with energy dispersive spectrometry and back scatter electron responses to identify phases, has been employed to provide rapid and economic analysis of sediments; large numbers of grains are counted with a greater statistical reliability than was previously possible.

Results from a survey at the Nepean River, NSW, delineate the maximum level of flooding in an environment where clearly defined flood deposits are not evident. The results suggest the flood levels to be higher than predicted from previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdalla, A. Y. & F. Whyte, 1979. The influence of bedrock on heavy mineral content of streams within a glaciated area of Perthshire. Scot. J. Geol. 15: 129–138.

    Article  CAS  Google Scholar 

  • Anderberg, M. R., 1973. Cluster Analysis for Applications. Academic Press, New York, 135 pp.

    Google Scholar 

  • Baker, V. R., 1984. Flood sedimentation in bedrock fluvial systems. In E. H. Koster & R. J. Steel (eds). Sedimentology of Gravels and Conglomerates. Can. Soc. Petroleum Geol. Memoir 10: 87–98.

    Google Scholar 

  • Baker, V. R., R. C. Kochel, P. C. Patton & G. Pickup, 1983. Paleohydrologic analysis of Holocene flood slack-water sediments. Spec. Pub. Int. Assoc. Sed. 6: 229–239.

    Google Scholar 

  • Bell, F. C. & W. D. Erskine, 1981. Effects of recent increases in rainfall on floods and runoff in the upper Hunter Valley. Search 12: 82–83.

    Google Scholar 

  • Chartres, C. J., 1981. The mineralogy of Quaternary deposits in the Kennet Valley, Berkshire. Proc. Geol. Assoc. 92(2): 93–103.

    Article  Google Scholar 

  • Cornish, P. M., 1977. Changes in seasonal and annual rainfall in New South Wales. Search 8: 38–40.

    Google Scholar 

  • Crawford, E., C. Herbert, G. Taylor, R. Helby, R. Morgan & J. Ferguson, 1980. Diatremes of the Sydney Basin. In C. Herbert & R. Helby (eds). A guide to the Sydney Basin. Geol. Survey of N.S.W. Bull. No. 26: 294–323.

    Google Scholar 

  • Creelman, R. A., R. Greenwood-Smith, P. Gottlieb & C. Paulson, 1986. The characterisation of mineral matter in coal and the products of coal combustion using QEM*SEM. In Proc. Aust. Inst. Energy, 2nd Conference, Newcastle.

    Google Scholar 

  • Davis, J. C, 1973. Statistics and Data Analysis in Geology. Wiley, New York, 550 pp.

    Google Scholar 

  • Erskine, W. D. & F. C. Bell, 1982. Rainfall, floods and river channel change in the upper Hunter. Aust. Geogr. Stud. 20: 183–196.

    Article  Google Scholar 

  • Jackson, B. R., A. F. Reid & J. C. Wittenberg, 1984. Technical note — rapid production of high quality polished sections for automated image analysis of minerals. Proc. Aust. Inst. Min. Metall. No. 289: 93–97.

    Google Scholar 

  • Jones, M. P., 1977. Automatic image analysis. In: J. Zussman (ed.). Physical Methods of Determinative Mineralogy, Chap. 4, Academic Press, London, 167–200.

    Google Scholar 

  • Jones, M. P. & G. Barbery, 1975. The size distributions and shapes of minerals in multiphase materials: practical determination and use in mineral process design and control. 11th Int. Min. Proc. Cong.

    Google Scholar 

  • Latreille, G. & A. le Griel, 1980. Reconstitution du système des terrasses de la Loire dans les bassins de Roanne et de Digoin à l’aide des minéraux lourds. Rev. Geol. Dynamique Geogr. Phys. 22: 223–228.

    Google Scholar 

  • des terrasses de la Loire dans les bassins de Roanne et de Digoin à l’aide des minéraux lourds. Rev. Geol. Dynamique Geogr. Phys. 22: 223–228.

    Google Scholar 

  • Logan, T. J., 1977. Chemical and mineralogical indices of sediment transformation during fluvial transport. In R. Davidson-Arnott & W. Nickling (eds.). Research in Fluvial Systems. Proc. 5th Guelph Symposium on Geomorphology, Geoabstracts, Norwich, 199–208.

    Google Scholar 

  • Metropolitan Water Sewage and Drainage Board, 1985. Warragamba Dam flood protection program. Internal Report, Sydney, 9 pp.

    Google Scholar 

  • Miller, R. L. & J. S. Kahn, 1962. Statistical Analysis in the Geological Sciences. Wiley, New York, 483 pp.

    Google Scholar 

  • Osborne, G. D., 1920. The volcanic neck at the Basin, Nepean River. J. Proc. Roy. Soc. NSW 54: 113–145.

    CAS  Google Scholar 

  • Paton, T. R., 1978. The formation of soil material. Allen and Unwin, Boston, 143 pp.

    Google Scholar 

  • Petruk, W. & Hughson, M. R., 1977. Image analysis evaluation of the effect of grinding media on selective flotation of two zinc-lead-copper ores. CIM Bull., June, 1–8.

    Google Scholar 

  • Petruk, W., 1978. Correlation between grain sized in polished section with sieving data and investigation of mineral liberation measurement from polished sections. Trans. Inst. Min. Metall, 87. Section C7: C272-C277.

    Google Scholar 

  • Pirkle, F. L., J. A. Howell, G. W. Wecksung, B. S. Duran & N. K. Stablein, 1984. An example of cluster analysis applied to a large geologic data set: aerial radiometric data from Copper Mountain, Wyoming. Math. Geol. 16: 479–498.

    Article  CAS  Google Scholar 

  • Pittock, A. B., 1975. Climatic change and the patterns of variation in Australian rainfall. Search 6: 498–504.

    Google Scholar 

  • Reid, A. F., P. J. Gottlieb, K. J. MacDonald & P. R. Miller, 1984. QEM*SEM image analysis of ore minerals: volume fraction, liberation and observational variances. In W. W. Park, D. M. Hausen & R. D. Hagni (eds.). Applied Mineralogy. Metallurg. Soc. of AIME, 191–204.

    Google Scholar 

  • Riley, S. J., 1981. The relative influence of dams and secular climatic change on downstream flooding, Australia. Water Res. Bull. 17(3): 361–366.

    Google Scholar 

  • Sneath, P. H. A. & R. R. Sokal, 1973. Numerical Taxonomy; The Principles and Practice of Numerical Classification. Freeman, San Francisco, 573 pp.

    Google Scholar 

  • Till, R., 1974. Statistical Methods for the Earth Scientist: An Introduction. MacMillan, London, 154 pp.

    Google Scholar 

  • Tucker, G. B., 1975. Climate: is Australia’s changing? Search 6: 323–328.

    Google Scholar 

  • Walker, P. H. & C. A. Hawkins, 1957. A study of river terraces and soil development on the Nepean River, N. S.W. J. Proc. Roy. Soc. NSW 91: 67–84.

    CAS  Google Scholar 

  • Wall, G. J. & L. P. Wilding, 1976. Mineralogy and related parameters of fluvial suspended sediments in Northwestern Ohio. J. Environ. Qual. 5: 168–173.

    Article  Google Scholar 

  • Warner, R. F., 1972. River terrace types in the coastal valleys of New South Wales. Aust. Geogr. 12: 1–22.

    Article  Google Scholar 

  • Warner, R. F., 1983. Channel changes in the sandstone and shale reaches of the Nepean River, New South Wales. In R. W. Young & G. C. Nanson (eds.). Aspects of Australian Sandstone Landscapes. Aust. New Zealand Geomorph. Group Spec. Publ; No. 1: 106–119.

    Google Scholar 

  • Water Conservation and Irrigation Commisssion, 1973. Water resources of the Hawkesbury Valley including Tuggerah Lakes and Lake Macquarie. Survey of thirty two NSW river valleys. Report No. 25, Water Conservation & Irrigation Commission, Sydney.

    Google Scholar 

  • Williams, M. A. J., 1984. Quaternary environments. In J. J. Veevers (ed.) Phanerozoic Earth History of Australia. Clarendon Press, Oxford, 42–47.

    Google Scholar 

  • Wood, P. A., 1978. Fine-sediment mineralogy of source rocks and suspended sediment, Rother catchment, West Sussex. Earth Surface Proc. 3: 255–263.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this paper

Cite this paper

Riley, S.J., Creelman, R.A., Warner, R.F., Greenwood-Smith, R., Jackson, B.R. (1989). The potential in fluvial geomorphology of a new mineral identification technology (QEM7*SEM). In: Sly, P.G., Hart, B.T. (eds) Sediment/Water Interactions. Developments in Hydrobiology, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2376-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2376-8_49

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9007-0

  • Online ISBN: 978-94-009-2376-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics