Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 275))

Abstract

Existing models describing infiltration and ponding time are described and their limitations discussed in detail. A physically based model which can include numerous effects, like variable rainfall rates, surface sealing, layering and others, is presented and is shown, by comparison with reference solutions, to be accurate and reliable for prediction purposes. Such analytical approximations are especially useful to initiate numerical solutions for complex situations and validate numerical schemes. The latter purpose can also be fulfilled by exact solutions in a few restricted situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boulier, J.F., J. Tourna, and M. Vauclin. 1984. ‘Flux-concentration relation-based solution of constant-flux infiltration equation: I. Infiltration into nonuniform initial moisture profiles.’ Soil Sci. Soc. Am. J. 48:245–251.

    Article  Google Scholar 

  • Boulier, J. F., J. -Y. Parlange, M. Vauclin, D. A. Lockington and R. Haverkamp. 1987. ‘Upper and lower bounds of the ponding time for near constant surface flux.’ Soil. Sci. Soc. Amer. J. 51:1424–1428.

    Article  Google Scholar 

  • Bouwer, H. 1964. ‘Unsaturated flow in ground-water hydraulics.’ J. Hydraul. Div., Am. Soc. Civ. Eng. 90 (5):121–127.

    Google Scholar 

  • Brooks, R.H., and T.H. Corey, 1964. Hydraulic properties of porous media. Hydrology paper 3. Colorado State Univ., Fort Collins, U.S.A.

    Google Scholar 

  • Brustkern, R.L. and H.J. Morel-Seytoux, 1970. ‘Analytical treatment of two-phase infiltration.’ Proc. ASCE, J. of Hydraulics Div., 96(12):235–2548.

    Google Scholar 

  • Brutsaert, W., 1966. ‘Probability Laws for pore-size distributions.’ Soil Sci., 101:85–92.

    Article  Google Scholar 

  • Chong, S.F. 1983. ‘Calculation of Sorptivity from constant-rate rainfall infiltration measurement.’ Soil Sci. Soc. Am. J. 47:627–630.

    Article  Google Scholar 

  • Gardner, W.R., D. Hillel, and Y. Benyamini, 1970. ‘Post-irrigation movement of soil water: 1. Redistribution.’ Water Resources Res., 6:851–861.

    Article  Google Scholar 

  • Green, W.A., and G.A. Ampt, 1911. Studies on soil physics, 1. ‘The flow of air and water through soils.’ J. Agr. Sci., 4:1–24.

    Article  Google Scholar 

  • Haverkamp, R., M. Vauclin, Y. Tourna, P. Wierenga, and G. Vachaud, 1977. ‘A comparison of numerical simulation models for one-dimensional infiltration.’ Soil Sci. Soc. Amer. J., 41:285–294.

    Article  Google Scholar 

  • Haverkamp, R. and M. Vauclin, 1981. ‘A comparative study of three forms of the Richards equation used for predicting one-dimensional infiltration in unsaturated soils.’ Soil Sci. Soc. Amer. J., 45:13–20.

    Article  Google Scholar 

  • Haverkamp, R., 1983. ‘Résolution de l’équation d’infiltration de l’eau dans le sol, Approches analytiques et numériques’, thèse de Docteur ès-Sciences Physiques, Univ. Scientifique et Médicale de Grenoble, France.

    Google Scholar 

  • Haverkamp, R., and J. -Y. Parlange, 1988. ‘Infiltration under ponded conditions: 3.’ Submitted to Soil Sci.

    Google Scholar 

  • Horton, R. E., 1940. ‘An approach towards a physical interpretation of infiltration capacity.’ Soil Sci. Soc. Am. Proc., 5:399–417.

    Article  Google Scholar 

  • Kostiakov, A.N., 1932. ‘On the dynamics of the coefficient of water percolation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration.’ Trans. Com. Int. Soc. Soil Sci., 6th Moscow, A:17–21.

    Google Scholar 

  • Kunze, R.J., and D.R. Nielsen. 1982. ‘Finite difference solutions of the infiltration equation.’ Soil Sci. 134:81–88.

    Article  Google Scholar 

  • Kunze, R.J., J. -Y. Parlange and C.W. Rose, 1985. ‘A comparison of numerical and optimization techniques for describing capillary rise.’ Soil Sci., 139:491–496.

    Article  Google Scholar 

  • Kutilek, M. 1980. ‘Constant-rainfall infiltration.’ J. Hydrol. 45:289–303.

    Article  Google Scholar 

  • Laliberte, G.E., 1969. ‘A mathematical function for describing capillary pressure desaturation data.’ Bull. Int. Ass. Sci. Hydrol., 14:131–149.

    Article  Google Scholar 

  • Mein, R. G., and C. L. Larson. 1973. ‘Modeling infiltration during a steady rain.’ Water Resour. Res. 9:384–394.

    Article  Google Scholar 

  • Moore, R.E., 1939. ‘Water conduction from shallow water tables.’ Hilgardia, 12:383–426.

    Google Scholar 

  • Morel-Seytoux, HJ. 1969. ‘Introduction to flow of immissible liquids in porous media.’ Chap. 11 in Flow through porous media. RJ.M. de Wiest, editor, Academic Press:455–516.

    Google Scholar 

  • Morel-Seytoux, HJ., 1976. ‘Derivation of equations for rainfall infiltration.’ J. Hydrol.31:203–219.

    Article  Google Scholar 

  • Morel-Seytoux, H.J., 1978. ‘Derivation of equations for variable rainfall infiltration.’ Water Resour. Res., 14(4):561–568.

    Article  Google Scholar 

  • Morel-Seytoux, H.J. 1981. ‘Application of Infiltration theory for the determination of excess rainfall hyetograph.’ Water Resources Bulletin, 17(6):1012–1022.

    Google Scholar 

  • Morel-Seytoux, H J. 1982. ‘Analytical results for predition of variable rainfall infiltration.’ J. Hydrol. 59:209–230.

    Article  Google Scholar 

  • Morel-Seytoux, HJ. 1986. ‘One-dimensional infiltration in homogeneous soils: A combined analytical-numerical approach.’ Annales Geophysicae, 4, B, 5:517–528.

    Google Scholar 

  • Morel-Seytoux, H.J., and D. Khanji, 1974. ‘Derivation of an equation of infiltration.’ Water Resour. Res., 10:795–800.

    Article  Google Scholar 

  • Neuman, S.P. 1976. ‘Wetting front pressure head in the infiltration model of Green and Ampt.’ Water Resour. Res. 12(3):564–566.

    Article  Google Scholar 

  • Ogrosky, H.O. and V. Mockus. 1964. ‘Hydrology of agricultural lands.’ In Handbook of applied hydrology. V.T. Chow, editor. McGraw Hill, NY.

    Google Scholar 

  • Parlange, J.-Y., 1971. Theory of water movement in soils: 2. One-dimensional infiltration.’ Soil Sci., 111:170–174.

    Article  Google Scholar 

  • Parlange, J.Y. 1972. ‘Theory of water movement in soils: 8. One-dimensional infiltration with constant flux at the surface.’ Soil Sci. 114:1–4.

    Article  Google Scholar 

  • Parlange, J.-Y, 1975. ‘On solving the flow equation in unsaturated soils by optimization: Horizontal infiltration.’ Soil Sci. Soc. Am. Proc. 39:415–418.

    Article  Google Scholar 

  • Parlange, J.-Y., I. Lisle, R.D. Braddock and R.E. Smith, 1982. ‘The three-parameter infiltration equation.’ Soil Sci., 133:337–341.

    Article  Google Scholar 

  • Parlange, J.-Y., R. Haverkamp, and J. Tourna, 1985. ‘Infiltration under ponded conditions: 1. Optimal analytical solution and comparison with experimental observations.’ Soil Sci., 139:305–311.

    Article  Google Scholar 

  • Parlange, J.Y., and R.E. Smith 1976. ‘Ponding time for variable rainfall rates.’ Can. J. Soil Sci. 56:121–123.

    Article  Google Scholar 

  • Parlange, J. -Y., J.L. Starr, R. Haverkamp, 1988. ‘Research needs in infiltration theory.’ Am. Soc. Ag. Eng. Paper No. 87–2537.

    Google Scholar 

  • Perroux, K.M., D.E. Smiles, and I. White. 1981. ‘Water movement in uniform soils during constant flux infiltration.’ Soil Sci. Soc. Am. J. 45:237–240.

    Article  Google Scholar 

  • Philip, J.R. 1955. ‘Numerical solution of equations of the diffusion type with diffusivity concentration-dependent: 1.’ Trans. Faraday Soc. 51:885–892.

    Article  Google Scholar 

  • Philip, J. R., 1957a. ‘Numerical solution of equations of the diffusion type with diffusivity concentration-dependent II.’ Austr. J. of Physics, 10:29–42.

    Article  Google Scholar 

  • Philip, J.R., 1957b. ‘The theory of infiltration: 4. Sorptivity and algebraic infiltration equations.’ Soil Sci., 84:257–264.

    Article  Google Scholar 

  • Philip, J. R., 1969. ‘Theory of infiltration.’ Adv. Hydrosc, 5, Academic Press, N.Y.,:215–305.

    Google Scholar 

  • Philip, J.R., 1973. ‘On solving the unsaturated flow equation: 1. The flux-concentration relation.’ Soil Sci., 116:328–335.

    Article  Google Scholar 

  • Rawls, W.J., and D.L. Brakensiek, 1983. ‘A procedure to predict Green and Ampt infiltration parameters.’ Proc. Nat. Conf. on Advances in Infiltration, ASAE, Chicago, pp. 102–112.

    Google Scholar 

  • Rendon, L., 1987. ‘L’irrigation à la planche: développement et évaluation d’un nouveau modèle hydrologique pour simuler et prédire l’avancement du front couplé à l’infiltation.’ Thèse de Docteur Ingénieur,Université Scientifique et Médicale de Grenoble, France.

    Google Scholar 

  • Richards, L.A., 1931. ‘Capillary conduction of liquids through porous medium.’ Physics, 1:318–333.

    Article  Google Scholar 

  • Smith, R.E., and J.Y. Parlange. 1977. ‘Optimal prediction of ponding.’ Trans. ASAE 20:493–496.

    Google Scholar 

  • Smith, R.E., and J.Y. Parlange. 1978. ‘A parameter-efficient hydrologie infiltration model.’ Water Resour. Res. 14:533–538.

    Article  Google Scholar 

  • Smith, R.E. 1972. ‘The infiltration envelope: Results from a theoretical infiltrometer.’ J. Hydrol. 17:1–21.

    Article  Google Scholar 

  • Smith, R.E. and Chery, D. L. 1973. ‘Rainfall excess model from soil water flow theory.’ J. Hydrol. Div. ASCE 99:1337–1351.

    Google Scholar 

  • Snedecor, G.W., and W.G. Cochran, 1980. ‘Statistical methods.’ The Iowa State Univ. Press, Ames.

    Google Scholar 

  • Swartzendruber, D., 1974. ‘Infiltration of constant flux rainfall into soil as analyzed by the approach of Green and Ampt.’ Soil Sci. 117:272–281.

    Article  Google Scholar 

  • Talsma, T., and J. -Y. Parlange, 1972. ‘One-dimensional infiltration.’ Aust. J. Soil Res. 10:143–150.

    Article  Google Scholar 

  • Tourna, J., G. Vachaud, and J. Y. Parlange, 1984. ‘Air and water flow in a sealed ponded vertical soil column.’ Soil Sci., 137:181–187.

    Article  Google Scholar 

  • Van Genuchten, M. Th., 1980. ‘A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.’ Soil Sci. Soc. Amer. J. 44:892–898.

    Article  Google Scholar 

  • White, I., D.E. Smiles, and K.M. Perroux. 1979. ‘Absorption of water by soil: The constant flux boundary condition.’ Soil Sci. Soc. Am. J. 43:659–664.

    Article  Google Scholar 

  • Youngs, E.G., 1968. ‘An estimation of sorptivity for infiltration studies from moisture moment considerations.’ Soil Sci. 106:157–163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Parlange, JY., Haverkamp, R. (1989). Infiltration and Ponding Time. In: Morel-Seytoux, H.J. (eds) Unsaturated Flow in Hydrologic Modeling. NATO ASI Series, vol 275. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2352-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2352-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7559-6

  • Online ISBN: 978-94-009-2352-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics