Skip to main content

Spatially Distributed Modeling: Conceptual Approach, Coupling Surface Water And Groundwater

  • Chapter
Unsaturated Flow in Hydrologic Modeling

Part of the book series: NATO ASI Series ((ASIC,volume 275))

Abstract

This chapter deals with the joint modeling of surface and groundwater flows by presenting and describing the MC model. The purpose of this deterministic physically-based model is to simulated the behavior of available water resources for one or several watershed. The model integrates surface flow, streamflow, flow in the unsaturated zone, groundwater flow and the interactions between rivers and water tables. Its formulation and its structure, especially its nested square meshes of variable sizes, give a great deal of flexibility to the model; this facilitates adaptation to variable modeling scales and to a wide range of geological geographical and climatological conditions. An application of the MC model on the Caramy watershed (France) is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachmat, Y., Bredehoeft, J., Andrews, B., Holtz, D. and Sebastian, S. (1980). ‘Groundwater management: the use of numerical models’, Water Resources Monograph, series 5, AGU, Washington DC, 127 p.

    Google Scholar 

  • Besbes, M. (1978). ‘L’estimation des apports aux nappes souterraines. Un modèle régional d’infiltration efficace’, Thèse d’Etat, Université Pierre et Marie Curie, Paris VI.

    Google Scholar 

  • Besbes, M., Duermael, B., Ledoux, E., de Marsily, G. and Talbot, A. (1981). ‘Soutien des étiages d’une rivière par pompage dans la nappe qu’elle draine: mythe ou réalité ?’, Bulletin du BRGM, 2(III).

    Google Scholar 

  • Bredehoeft, J.D. and Pinder, G.F. (1970). ‘Digital analysis of areal flow in multiaquifer groundwater systems: a quasi three-dimensional model’, Water Resources Research, 6(3), 883–888.

    Article  Google Scholar 

  • Crawford, N.G. and Linsley, R.K. (1966). ‘Digital simulation in hydrology: Stanford watershed model IV’. Dept of Civil Eng., Stanford University, tech rep. n° 39, 220 p.

    Google Scholar 

  • Cunningham, A.B. and Sinclair, P.J. (1979). ‘Application and analysis of a coupled surface and groundwater model’, Journal of Hydrology, 43. P. 129–148.

    Article  Google Scholar 

  • Deschenes, J. (1984). ‘Modélisation en hydrologie: le cas de la simulation conjointe des écoulements de surface et souterrains à l’échelle du bassin versant’, Thèse de maîtrise, INRS-Eau, 117 p., 3 annexes.

    Google Scholar 

  • Deschenes, J., Villeneuve, J.P., Ledoux, E. and Girard, G. (1985). ‘Modeling the hydrologie cycle: the MC model, Part I: Principles and description’, Nordic Hydrology, 16, p. 257–272.

    Google Scholar 

  • Deschenes, J., Villeneuve, J.P., Ledoux, E. and Girard G. (1985). ‘Modeling the hydrologie cycle: the MC model, Part II: modeling applications’, Nordic Hydrology, 16, p. 273–290.

    Google Scholar 

  • Fleming, R.A. (1979). ‘Deterministic models in hydrology’, FAO Irrigation and Drainage Paper, Roma, 80 p.

    Google Scholar 

  • Freeze, R.A. (1972). ‘Role of subsurface flow in generating surface runoff, 2. Upstream source areas’, Water Resources Research, 8(5), p. 1273–1284.

    Article  Google Scholar 

  • Freeze, R.A. and Harlan, R.L. (1969). ‘Blueprint for a physically -based digitally — simulated hydrologie response model’, Journal of Hydrology, 9, p. 237–258.

    Article  Google Scholar 

  • Girard, G., Ledoux, E. and Villeneuve, J.P. (1981). ‘Le modèle couplé: simulation conjointe des écoulements de surface et des écoulements souterrains sur un système hydrologique’, Cahiers de l’ORSTOM, série Hydrologie, 18(4).

    Google Scholar 

  • Girard, G., Morin, G. and Charbonneau, R. (1972). ‘Modèle précipitations-débits à discrétisation spatiale’, Cahiers de l’ORSTOM, série Hydrologie, 9(4), p. 35–52.

    Google Scholar 

  • Hansen, E. and Dyhr-Nielsen, M. (1983). ‘Le projet du Susa: construction de modèles pour la gestion des ressources en eau’, Unesco, Nature et Ressources, 19(3).

    Google Scholar 

  • Jacquet, J. (1971). ‘Aspects généraux de la représentation mathématique des phénomènes en hydrologie de surface’, La Houille Blance, 2, p. 104–110.

    Google Scholar 

  • Knapp, R.M., Green, D.W., Pogge, C. and Stanford, C. (1975). ‘Development and field testing of a basin hydrology simulator’, Water Resources Research, 11(6), p. 879–888.

    Article  Google Scholar 

  • Ledoux, E. (1986). ‘Modèles mathématiques en hydrogéologie’, Ecole Nationale Supérieure des Mines de Paris, CIG, rep. LHM/RD/86/12.

    Google Scholar 

  • Ledoux, E. and Tillie, B. (1980). ‘Programme Newsam. Principe et notice d’emploi, version 1980’, Ecole Nationale Supérieure des Mines de Paris, CIG, rep. LHM/RD/81/40.

    Google Scholar 

  • Ledoux, E., Levassor, A., Charbonneau, R., Morin, G. and Villeneuve, J.P. (1976). Simulation des débits de l’Orne, la Dives et la Seule1, Coopération franco-québécoise, INRS-Eau.

    Google Scholar 

  • Marsily, G. de, Ledoux, E., Levassor, A., Poitrinal, D. and Salem, A. (1978). ‘Modeling of large multilayered aquifer systems: theory and applications’, Journal of Hydrology, 36, p. 1–34.

    Article  Google Scholar 

  • Marsily, G. de, Frasnetti, J.C., Ledoux, E., Tiburtini, R. and Villeneuve, J.P. (1977). ‘Inventaire des ressources en eau et adéquation besoins-ressources: peut-on faire une première approche simplifiée à partir d’une modélisation complète du cycle de l’eau ?’, Colloque national “les eaux souterraines et l’approvisionnement en eau de la France”, Nice.

    Google Scholar 

  • Miles, J.C. and Rushton, K.R. (1983). ‘A coupled surface water and groundwater catchment model’, Journal of Hydrology, 62, P. 159–177.

    Article  Google Scholar 

  • Morel-Seytoux, J.J., Illangasekare, T., Bittinger, M.W. and Evan, N.A. (1980). ‘Potential use of a stream-aquifer model for management of a river basin: case of the South Platte river in Colorado’, Prog. Wat. Tech. vol. 13, Cincinnati, p. 175–187, Pergamon Press.

    Google Scholar 

  • Morel-Seytoux, H.J., Daly, C.J., Illangasekare, T. and Bazaraa, A. (1981). ‘Design and merit of a river-aquifer model for optimal use of agricultural water’, Journal of Hydrology, 51, p. 17–27.

    Article  Google Scholar 

  • Morin, G., Fortin, J.P., Lardeau, J.P., Sochanska, W. and Paquette, S. (1981). ‘Modèle CEQUEAU, manuel d’utilisation’, INRS-Eau, sci.rep. n° 93, 449 p.

    Google Scholar 

  • Mulvaney, R.J. (1951). ‘On the use of self-registering rain and flood gauges in making observations on the relations of rainfall and of flood discharges in a given catchment’, Trans. Inst. Civil Engrs. Jr. (Dublin), 4(2): 18.

    Google Scholar 

  • Nash, J.E. (1959). ‘Systematic determination of unit hydrograph parameters’, Journal of Geophys. res., 61(1).

    Google Scholar 

  • Pinder, G.F. and Sauer, S.P. (1971). ‘Numerical simulation of flood wave modification due to bank storage effects’, Water Resources Res., 7(1), P. 63–70.

    Article  Google Scholar 

  • Prickett, T.A. and Lonquist, C.G. (1971). ‘Selected digital computer techniques for groundwater resource evaluation’, Illinois state water surv. bull., 55, 62 p.

    Google Scholar 

  • Refsgaard, J.Chr. and Hansen E. (1982b). ‘A distributed groundwater/ surface Water model for the Susa-catchment, Part II: simulation and streamflow depletions due to groundwater abstraction’, Nordic hydrology, 13, p. 299–310.

    Google Scholar 

  • Trescott, P.C., Pinder, G.F. and Larson, S.P. (1976). ‘Finite difference model for aquifer simulation in two dimensions with results of numerical experiments’, Techniques of water resources investigations of the US Geol. Surv. book, 7, chap, cl, 116 p.

    Google Scholar 

  • US Army Corps of Engineers (1975). ‘Program description and user manual for SSARR-streamflow synthesis and reservoir regulation’, US Army engineer, division North Pacific Portlant, Oregon, Program, 724-K6–60010.

    Google Scholar 

  • Villeneuve, J.P., Isabel, D. and Houle, S. (1984). ‘Le modèle de simulation hydrologique MDOR’, sci. rep. n° 163, INRS-Eau.

    Google Scholar 

  • Villeneuve, J.P. and Leblanc, D. (1978). ‘Algorithme de schématisation des écoulements d’un bassin versant’, intern, rep. n° 62, INRS-Eau.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ledoux, E., Girard, G., de Marsily, G., Villeneuve, J.P., Deschenes, J. (1989). Spatially Distributed Modeling: Conceptual Approach, Coupling Surface Water And Groundwater. In: Morel-Seytoux, H.J. (eds) Unsaturated Flow in Hydrologic Modeling. NATO ASI Series, vol 275. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2352-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2352-2_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7559-6

  • Online ISBN: 978-94-009-2352-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics