Skip to main content

Adaptive Methods in Temporal Processing

  • Chapter
Underwater Acoustic Data Processing

Part of the book series: NATO ASI Series ((NSSE,volume 161))

Abstract

It is very difficult to present in one lecture all the material corresponding to the title of this paper. There are entire books on adaptive filtering and we do not even intend to make a résumé of them [1]–[4]. Adaptive systems have been the topic of many papers in previous meetings of the NATO Advanced Study Institute on Underwater Acoustics and Signal Processing, and this tutorial lecture will not make a new contribution to the field. On the contrary, after a long period of production, it is now time to make an overview of this material. As the field is extremely broad, it would of course be impossible to cover all the problems in one lecture, and we will focus our attention on some points which especially interest us.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.L. HONIG and D.G. MESSERSCHMITT, Adaptive filters: Structures, Algorithms and Applications, Kluwer Academic, Boston, 1984.

    MATH  Google Scholar 

  2. C. COWAN and P. GRANT, Adaptive filters, Prentice Hall, Englewood Cliffs, N.J., 1985.

    MATH  Google Scholar 

  3. B. WIDROW and S.D. STEARNS, Adaptive Signal Processing, Prentice Hall, Englewood Cliffs, N.J., 1985.

    MATH  Google Scholar 

  4. M. BELLANGER, Adaptive Digital Filters and Signal Analysis, Marcel Dekker, New York, 1987.

    Google Scholar 

  5. C.W. HELSTROM, Statistical theory of signal detection, Pergamon Press, New-York, 1968.

    Google Scholar 

  6. H.L. VAN TREES, Detection, estimation and modulation theory, Wiley, New-York, 1971.

    MATH  Google Scholar 

  7. P. COMON and J.L. LACOUME, Noise reduction for an estimated Wiener filtering using noise reference, IEEE Trans. on Inf. Theory, IT 32, pp. 310–313, 1986.

    Google Scholar 

  8. P. COMON and D. PHAM, An error bound for a noise canceller, Internal report, CEPHAG, Grenoble, 1988.

    Google Scholar 

  9. B. PICINBONO et P. DUVAUT, Detection and contrast, in Stochastic processes in underwater acoustics, edited by C. Baker, Lectures Notes in Control and Information Science, 85, Springer-Verlag, 1986.

    Google Scholar 

  10. I.S. REED, J.D. MALLET and L.E. BRENNAN, Rapid convergence rate in adaptive arrays, IEEE Trans. Aerospace and Electronic Systems, AES 8, pp.853–863, 1974.

    Google Scholar 

  11. S. KAY, Asymptotically optimal detection in unknown colored noise via autoregressive modeling, IEEE Trans. ASSP, 31, pp.927–940, 1983.

    Google Scholar 

  12. S. KAY and D. SENGUPTA, Optimal detection in colored non-Gaussian noise with unknown parameters, ICASSP 1987, Dallas, pp. 1087–1090, 1987.

    Google Scholar 

  13. E.J. KELLY, An adaptive detection algorithm, IEEE Trans. Aerospace and Electronic Systems, AES 22, pp. 115–127, 1986.

    Google Scholar 

  14. B. PORAT and B. FRIEDLANDER, Parametric techniques for adaptive detection of Gaussian signals”, IEEE Trans. ASSP, 32, pp.780–790.

    Google Scholar 

  15. D. TUFTS, I. Kirsteins and R. Kumaresan, Data-adaptive detection of a weak signal, IEEE Trans. Aerospace and Electronic Systems, pp.313–316, 1983.

    Google Scholar 

  16. I. KIRSTEINS and D. TUFTS, On the probability density of signal to noise ratio in an improved adaptive detector, ICASSP 85, pp.572–575, 1985.

    Google Scholar 

  17. G. VEZZOSI, B. PICINBONO, Détection d’un signal certain dans un bruit sphériquement invariant, structure et caractéristiques des récepteurs, Annales des Télécommunications, Vol.27, n° 3–4, pp.95–110, 1972.

    Google Scholar 

  18. P.G. CABLE, Maximum likelihood detection of signals in noise with unknown level, dans Aspects of Signal Processing, G. Tacconi (éditeur), Reidel, pp. 229–250, 1977.

    Google Scholar 

  19. M.H. EL AYADI, B. Picinbono, NAR AGC adaptive detection of nonoverlapping signals in noise with fluctuating power, IEEE Transactions on Acoustic, Speech and Signal Processing, Vol. 29, n° 5, pp.952–963, 1981.

    Article  MATH  Google Scholar 

  20. M.A. BLANCO, R.M. BARNES, On the detection of signals of unknown energy in clutter of unknown power, 1980, IEEE Canadian Communications and Power Conference, 15–17/10/1980, Montréal.

    Google Scholar 

  21. J.P. GIBSON, J.L. MELSA, Introduction to non-parametric detection with applications, Academic Press, 1975.

    Google Scholar 

  22. G. VEZZOSI, What is optimality for an adaptive detection system?, Signal Proc, NATO Advanced Study Institute, Academic Press, p.657, 1973.

    Google Scholar 

  23. F. LEFAUDEUX, Algorithmes pragmatiques de normalisation, VIII Colloque GRETSI, Nice, Juin 1981, pp.651–655, 1981.

    Google Scholar 

  24. V. HANSEN and J. SAWYERS, Detectability loss due to the greatest of selection in a cell-averagving CFAR, IEEE Trans. Aerospace and Electronics Systems, AES 16, pp. 115–118, 1980.

    Article  Google Scholar 

  25. M. WEISS, Analysis of some modified cell-averaging CFAR processors in multiple-target situations, IEEE Transaction on Aerospace and Electronic Systems, Vol.18, n° 1, pp. 102–114, 1982.

    Article  Google Scholar 

  26. E.K. EL HUSSAINI, B.M. IBRAHIM, Comparison of adaptive cell-avaraging detectors for multiple-target situations, Proceedings of the IEEE, Vol.133, n° 3, pp.217–223, 1986.

    Google Scholar 

  27. R. NITZBERG, Clutter map CFAR analysis, IEEE Transactions on Aerospace and Electronic Systems, Vol.22, n° 4, pp.419–421, 1986.

    Article  Google Scholar 

  28. W.A. STRUZINSKI et E.D. LOWE, Performance comparison of four noise background normalization schemes proposed for signal detection systems, Journal of the Acoustical Society of America, Vol.76, n° 6, pp. 1738.1732., 1984.

    Article  Google Scholar 

  29. W.A. STRUZINSKI et E.D. LOWE, The effect of improper normalization on the performance of an automated energy detector, Journal of the Acoustical Society of America, Vol.78, n° 3, pp.936–941, 1985.

    Article  Google Scholar 

  30. C. PLUMEJEAUD, B. RAFINE et B. LUCAS, Un algorithme de normalisation, IX colloque GRETSI, Nice 1983, pp. 111–114, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Picinbono, B. (1989). Adaptive Methods in Temporal Processing. In: Chan, Y.T. (eds) Underwater Acoustic Data Processing. NATO ASI Series, vol 161. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2289-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2289-1_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7527-5

  • Online ISBN: 978-94-009-2289-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics