Skip to main content

Characterization of phycobiliprotein and linker polypeptide genes in Fremyella diplosiphon and their regulated expression during complementary chromatic adaptation

  • Chapter
Molecular Biology of Photosynthesis

Abstract

Phycobilisomes, comprised of both chromophoric (phycobiliproteins) and non-chromophoric (linker polypeptides) proteins, are light-harvesting complexes present in the prokaryotic cyanobacteria and the eukaryotic red algae. Many cyanobacteria exhibit complementary chromatic adaptation, a process which enables these organisms to optimize absorption of prevalent wavelengths of light by altering the composition of the phycobilisome. To examine the mechanisms involved in adjusting the levels of phycobilisome components during complementary chromatic adaptation, we have isolated and sequenced genes encoding phycobiliprotein and linker polypeptides in the cyanobacterium Fremyella diplosiphon, analyzed their transcriptional characteristics (transcript sizes and abundance when F. diplosiphon is grown in different light qualities) and mapped transcript initiation and termination sites. Our results demonstrate that genes encoding phycobilisome components are often cotranscribed as polycistronic messenger RNAs. Light quality regulates the composition of the phycobilisome by causing changes in the abundance of transcripts encoding specific components, suggesting that regulation is at the level of transcription (although not eliminating the possibility of changes in mRNA stability). The work presented here sets the foundation for analyzing the evolution of the different phycobilisome components and exploring signal transduction from photoperception to activation of specific genes using in vivo and in vitro genetic technology.

C.I.W.-D.P.B. Publication No.992

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

kDa:

kilodalton

kb:

kilobase pair

AP:

allophycocyanin

PC:

phycocyanin

PE:

phycoerythrin

PEC:

phycoerythrocyanin; an α or β given as a superscript to AP, PC or PE indicates specifically the α or β subunit of that biliprotein; L 9.7C , L 9.7R , L 31RC , L 35R , L 35.5R , L 37.5R and L 39R are the linker (L) polypeptides of the phycobilisome either located in the core (subscript C), the core-rod interface (subscript RC) or the rods (subscript R). Apparent molecular masses, in kDa, are indicated as superscripts to L.

References

  • Allen MM and Smith AJ (1969) Nitrogen chlorosis in blue-green algae. Arch Microbiol 69: 111–120

    Google Scholar 

  • Anderson LK and Eiserling FA (1986) Asymmetrical core structure in phycobilisomes of the cyanobacterium Synechocystis 6701. J Mol Biol 191: 441–451

    PubMed  CAS  Google Scholar 

  • Anderson LK and Grossman AR (1987) Phycocyanin genes in the cyanobacterium Synechocystis 6701 and a potential gene rearrangement in a pigment variant. In: Biggins J (ed.) Progress in photosynthesis (Proceedings of the VIIth International Congress of Photosynthesis) Vol 4, pp 817–820. The Hague: Martinus Nijhoff Publishers

    Google Scholar 

  • Anderson LK, Rayner MC and Eiserling FA (1987) Mutations that affect structure and assembly of light-harvesting proteins in the cyanobacterium Synechocystis sp. strain 6701. J Bacteriol 169: 102–109

    PubMed  CAS  Google Scholar 

  • Anderson LK, Rayner MC and Eiserling FA (1984) Ultraviolet mutagenesis of Synechocystis sp. 6701: Mutations in chromatic adaptation and phycobilisome assembly. Arch Microbiol 138: 237–243

    CAS  Google Scholar 

  • Bashford D, Chothea C and Lesk ML (1987) Determinants of a protein fold. Unique features of the globin amino acid sequences. J Mol Biol 196: 199–216

    PubMed  CAS  Google Scholar 

  • Belasco JG, Beatty T, Adams CW, von Gabain A and Cohen SN (1985) Differential expression of photosynthesis genes in Rhodopseudomonas capsulata results from segmental differences in stability within the polycistronic rxc transcript. Cell 40: 171–181

    PubMed  CAS  Google Scholar 

  • Belknap WR and Haselkorn R (1987) Cloning and light regulation of expression of the phycocyanin Operon of the cyanobacterium Anabaena. EMBO J 6: 871–884

    PubMed  CAS  Google Scholar 

  • Bennett A and Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58: 419–435

    PubMed  CAS  Google Scholar 

  • Björn GS and Björn LO (1976) Photochromic pigments from blue-green algae: phycochromes a, b and c. Physiol Plant 36: 297–304

    Google Scholar 

  • Bogorad L (1975) Phycobiliproteins and complementary chromatic adaptation. Annu Rev Plant Physiol 26: 369–401

    CAS  Google Scholar 

  • Bohnert HJ, Michalowski C, Koller B, Delius H, Mucke H and Löffelhardt W (1983) The cyanelle genome from Cyanophora paradoxa. In: Schenk HEA (ed.) Endocytobiology II, pp 433–448. Berlin: de Gruyter

    Google Scholar 

  • Bryant DA (1981) The photoregulated expression of multiple phycocyanin species. General mechanism for control of phycocyanin synthesis in chromatically adapting cyanobacteria. Eur J Biochem 119: 425–429

    PubMed  CAS  Google Scholar 

  • Bryant DA and Cohen-Bazire G (1981) Effects of chromatic illumination on cyanobacterial phycobilisomes. Evidence for the specific induction of a second pair of phycocyanin subunits in Pseudanabaena 7409 grown in red light. Eur J Biochem 119: 415–424

    PubMed  CAS  Google Scholar 

  • Bryant DA, de Lorimier R, Guglielmi G, Stirewalt VL, Cantrell A and Stevens SE Jr (1987) The cyanobacterial photosynthetic apparatus. In: Biggins J (ed.) Progress in Photosynthesis (Proceedings of the Vllth International Congress on Photosynthesis), Vol 4, pp 749–755. The Hague: Martinus Nijhoff Publishers

    Google Scholar 

  • Bryant DA, de Lorimier R, Guglielmi G, Stirewalt VL, Dubbs JM, Illman B, Porter RD and Stevens SE Jr (1985a) Genes for phycobilisome components in Synechococcus 7002, Pseudanabaena 7409 and Mastigocladus laminosus. In: V International Symposium on Photosynthetic Prokaryotes (Abstract) 103

    Google Scholar 

  • Bryant DA, de Lorimier R, Lambert DH, Dubbs JM, Stirewalt VL, Stevens SE Jr, Porter RD, Tarn J and Jay E (1985b) Molecular cloning and nucleotide sequence of the α and β subunits of allophycocyanin from the cyanelle genome of Cyanophora paradoxa. Proc Natl Acad Sci USA 82: 3242–3246

    PubMed  CAS  Google Scholar 

  • Bryant DA, de Lorimier R, Porter RD, Lambert DH, Dubbs JM, Stirewalt VL, Field PI, Stevens SE Jr, Liu W-Y, Tarn J and Jay EWK (1985c) Phycobiliprotein genes in cyanobacteria and cyanelles. In: Arntzen C, Bogorad L, Bonitz S and Steinback K (eds) Molecular Biology of the Photosynthetic Apparatus, pp 249–258. Cold Spring Harbor Laboratory Publication, Cold Spring Harbor, NY

    Google Scholar 

  • Bryant DA, Glazer AN and Eiserling FA (1976) Characterization and structural properties of the major biliproteins of Anabaena sp. Arch Microbiol 110: 61–75

    PubMed  CAS  Google Scholar 

  • Bryant DA, Guglielmi G, Tandeau de Marsac N, Castets A-M and Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: A model. Arch Microbiol 123: 113–127

    CAS  Google Scholar 

  • Chauvat F, De Vries L, Van der Ende A, and Van Arkel GA (1986) A host vector system for gene cloning in the cyanobacterium Synechocystis PCC 6803. Mol Gen Genet 204: 185–191

    CAS  Google Scholar 

  • Cobley JG (1985) Chromatic adaptation in Fremyella diplosiphon. I. Mutants hypersensitive to green light. II. Construction of mobilizable vectors lacking sites for FDII and II. In V International Symposium on Photosynthetic Prokaryotes (Abstract) 105

    Google Scholar 

  • Cobley JG and Miranda RD (1983) Mutations affecting chromatic adaptation in the cyanobacterium Fremyella diplosiphon. J Bact 153: 1486–1492

    PubMed  CAS  Google Scholar 

  • Cole JR and Nomura M (1986) Translational regulation is responsible for growth-rate-dependent and stringent control of the synthesis of ribosomal proteins L11 and L1 in Escherichia coli. Proc Natl Acad Sci USA 83: 4129–133

    PubMed  CAS  Google Scholar 

  • Conley PB, Lemaux PG and Grossman AG (1988) Molecular characterization and evolution of sequences encoding light harvesting components in the chromatically adapting cyanobacterium Fremyella diplosiphon. J Mol Biol 199: 447–465

    PubMed  CAS  Google Scholar 

  • Conley PB, Lemaux PG and Grossman AR (1985) Cyanobacterial light-harvesting complex subunits encoded in two red light-induced transcripts. Science 230: 550–553

    PubMed  CAS  Google Scholar 

  • Conley PB, Lemaux PG, Lomax TL and Grossman AR (1986) Genes encoding major light-harvesting polypeptides are clustered on the genome of the cyanobacterium Fremyella diplosiphon. Proc Natl Acad Sci USA 83: 3924–3928

    PubMed  CAS  Google Scholar 

  • De Boer HA and Kastelein RA (1986) Biased codon usage: An explanation of its role in optimizing translation. In: Reznikoff W and Gold L (eds) Maximizing gene expression, pp 225–285. Boston: Butterworth Press

    Google Scholar 

  • De Lorimier R, Bryant DA, Porter RD, Liu W-Y, Jay E and Stevens SE Jr (1984) Genes for α and β phycocyanin. Proc Natl Acad Sci USA 81: 7946–7950

    PubMed  Google Scholar 

  • Diakoff S and Schiebe J (1973) Action spectrum for chromatic adaptation in Tolypothrix tenuis. Plant Physiol 51: 382–385

    PubMed  CAS  Google Scholar 

  • Dynan WS and Tjian R (1985) Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature 316: 774–778

    PubMed  CAS  Google Scholar 

  • Egelhoff T and Grossman AR (1983) Cytoplasmic and chloroplast synthesis of phycobilisome polypeptides. Proc Natl Acad Sci USA 80: 3339–3343

    PubMed  CAS  Google Scholar 

  • Füglistaller P, Rümbeli R, Suter F and Zuber H (1985) Minor polypeptides from the phycobilisome of the cyanobacterium Mastigocladus laminosus. Hoppe-Seyler’s Z Physiol Chem 365: 1085–1096

    Google Scholar 

  • Füglistaller P, Suter F and Zuber H (1985) Linker polypeptides of the phycobilisome from the cyanobacterium Mastigocladus laminosys: amino acid sequence and relationships. Biol Chem Hoppe-Seyler 366: 993–1001

    PubMed  Google Scholar 

  • Furuichi Y and Shatkin AJ (1976) Differential synthesis of blocked and unblocked 5′-termini in reovirus mRNA: Effect of pyrophosphate and pyrophosphatase. Proc Natl Acad Sci USA 73: 3448–3452

    PubMed  CAS  Google Scholar 

  • Galas DJ and Schmitz A (1978) DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucl Acids Res 5: 3157–3170

    PubMed  CAS  Google Scholar 

  • Gantt E (1981) Phycobilisomes. Annu Rev Plant Physiol 32: 327–347

    CAS  Google Scholar 

  • Gendel S, Ohad I and Bogorad L (1979) Control of phycoerythrin synthesis during chromatic adaptation. Plant Physiol 64: 786–790

    PubMed  CAS  Google Scholar 

  • Gray MW and Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46: 1–42

    PubMed  CAS  Google Scholar 

  • Gingrick JC, Williams RC and Glazer AN (1982) Rod substructures in cyanobacterial phycobilisomes: phycoerythrin assembly in Synechocystis 6701 phycobilisomes. J Cell Biol 95: 170–178

    Google Scholar 

  • Glazer AN (1985) Light harvesting by phycobilisomes. Annu Rev Biochem 14: 47–77

    CAS  Google Scholar 

  • Glazer AN (1984) A macromolecular complex optimized for light energy transfer. Biochim Biophys Acta 768: 29–51

    CAS  Google Scholar 

  • Glazer AN (1982) Phycobilisomes: structure and dynamics. Annu Rev Microbiol 36: 173–198

    PubMed  CAS  Google Scholar 

  • Glazer AN, Lundell DJ, Yamanaka G and Williams RC (1983) The structure of a simple phycobilisome. Ann Microbiol (Inst Pasteur) 134B: 159–180

    CAS  Google Scholar 

  • Glazer AN, Yeh SW, Webb SP and Clark JH (1985) Disk-to-disk transfer as the rate limiting step for energy flow in phycobilisomes. Science 227: 419–423

    PubMed  CAS  Google Scholar 

  • Golden SS and Sherman LA (1984) Optimal conditions for genetic transformation of the cyanobacterium Anacystis nidulans R2. J Bact 158: 36–42

    PubMed  CAS  Google Scholar 

  • Grossman AD, Erickson JW and Gross CA (1984) The htp R gene product of E. coli is a sigma factor for heat shock promoters. Cell 38: 383–390

    PubMed  CAS  Google Scholar 

  • Grossman AR, Talbot L and Egelhoff T (1983) Biosynthesis of phycobilisome polypeptides of Porphyridium aerugineum and Cyanophora paradoxa. In: Carnegie Institution of Washington Year Book 82: 112–116

    Google Scholar 

  • Grossman AR, Lemaux PG and Conley PB (1986) Regulated synthesis of phycobilisome components. Photochem Photobiol 44: 827–837

    PubMed  CAS  Google Scholar 

  • Haury JF and Bogorad L (1977) Action spectra for phycobiliprotein synthesis in a chromatically adapting cyanophyte. Plant Physiol 60: 835–839

    PubMed  CAS  Google Scholar 

  • Heberlein U, England B and Tjian R (1985) Characterization of Drosophila transcription factors that activate the tandem promoters of alcohol dehydrogenase gene. Cell 41: 965–977

    PubMed  CAS  Google Scholar 

  • Herdman M (1982) Evolution and genetic properties of cyanobacterial genomes. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria, pp 263–306. Berkeley and Los Angeles: University of California Press

    Google Scholar 

  • Hirschman J, Wong P-K, Sei K, Keene J and Kustu S (1985) Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: evidence that the ntrA product is a sigma factor. Proc Natl Acad Sci USA 82: 7525–7529

    PubMed  CAS  Google Scholar 

  • Houmard J, Mazel D, Moguet C, Bryant DA and Tandeau de Marsac N (1986) Organization and nucleotide sequence of genes encoding core components of the phycobilisomes from Synechococcus 6301. Mol Gen Genet 205: 404–410

    PubMed  CAS  Google Scholar 

  • Ihlenfeldt MJA and Gibson J (1975) Phosphate utilization and alkaline phosphatase activity in Anacystis nidulans (Synechococcus). Arch Microbiol 102: 23–28

    PubMed  CAS  Google Scholar 

  • Kuhlemeier CJ, Thomas AAM, Van Der Ende A, Van Leen RW, Borrias WE, Van Den Handel CAMJJ and Van Arkel GA (1983) A host-vector system for gene cloning in the cyanobacterium Anacystis nidulans R2. Plasmid 10: 156–163

    PubMed  CAS  Google Scholar 

  • Kuntz M, Crouse EJ, Mubumbila M, Burkard G, Weil J-H, Bohnert HJ, Mucke H and Löffelhardt W (1984) Transfer RNA gene mapping studies on cyanelle DNA from Cyanophora paradoxa. Mol Gen Genet 194: 508–512

    CAS  Google Scholar 

  • Lambert DH, Bryant DA, Stirewalt VL, Dubbs JM, Stevens SE Jr and Porter RD (1985) Gene map for the Cyanophora paradoxa cyanelle genome. J Bact 164: 659–664

    PubMed  CAS  Google Scholar 

  • Lau RJ, Mackenzie MM and Doolittle WF (1977) Phycocyanin synthesis and degradation in the blue-green bacterium Anacystis nidulans. J Bacteriol 132: 771–778

    PubMed  CAS  Google Scholar 

  • Lawry NH and Jensen TE (1979) Deposition of condensed phosphate as an effect of varying sulfur deficiency in the cyanobacterium Synechococcus sp (Anacystis nidulans). Arch Microbiol 120: 1–7

    CAS  Google Scholar 

  • Lawry NH and Jensen TE (1986) Condensed phosphate deposition, sulfur amino acid use, and unidirectional transulfuration in Synechococcus leopoliensis. Arch Microbiol 144: 317–323

    CAS  Google Scholar 

  • Lemaux PG and Grossman AR (1985) Major light-harvesting polypeptides encoded in polycistronic transcript in eukaryotic algae. EMBO J 4: 1911–1919

    PubMed  CAS  Google Scholar 

  • Lemaux PG and Grossman AR (1984) Isolation and characterization of a gene for a major light-harvesting polypeptide from Cyanophora paradoxa. Proc Natl Acad Sci USA 81: 4100–4104

    PubMed  CAS  Google Scholar 

  • Lipman DJ and Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227: 1435–141

    PubMed  CAS  Google Scholar 

  • Lind LK, Kalla SR, Lönneborg A, Öquist G and Gustafsson P (1985) Cloning of the ß phycocyanin gene from Anacystis nidulans. FEBS Lett 188: 27–32

    CAS  Google Scholar 

  • Löffelhardt W, Mucke H, Crouse EJ and Bohnert HJ (1983) Comparison of the cyanelle DNA from two different strains of Cyanophora paradoxa. Curr Genetics 7: 139–144

    Google Scholar 

  • Lomax TL, Conley PB, Schilling J and Grossman AR (1987) Isolation and characterization of light-regulated phycobilisome linker polypeptide genes and their transcription as a polycistronic mRNA. J Bacteriol 169: 2675–2684

    PubMed  CAS  Google Scholar 

  • Lönneborg A, Lind LK, Kalla SR, Gustafsson P and Öquist G (1985) Acclimation processes in the light-harvesting system of the cyanobacterium Anacystis nidulans following a light shift from white to red. Plant Physiol 78: 110–114

    PubMed  Google Scholar 

  • Losick R, Youngman P and Piggot P (1986) Genetics of endospore formation in Bacillus subtilis. Annu Rev Genet 20: 625–669

    PubMed  CAS  Google Scholar 

  • Lundell DJ and Glazer AN (1983a) Molecular architecture of a light-harvesting antenna. Quaternary interactions in the Synechococcus 6301 phycobilisome core as revealed by partial tryptic digestion and circular dichroism studies. J Biol Chem 258: 8708–8713

    PubMed  CAS  Google Scholar 

  • Lundell DJ and Glazer AN (1983b) Molecular architecture of light-harvesting antenna. Core substructure in Synechococcus 6301 phycobilisomes: Two new allophycocyanin and all-ophycocyanin B complexes. J Biol Chem 258: 902–908

    PubMed  CAS  Google Scholar 

  • Lundell DJ and Glazer AN (1983c) Molecular architecture of a light-harvesting antenna. Structure of the 18S core-rod subassembly of Synechococcus 6301 phycobilisomes. J Biol Chem 258: 894–901

    PubMed  CAS  Google Scholar 

  • Lundell DJ, Yamanaka G and Glazer AN (1981a) A terminal energy acceptor of the phycobilisome; a new biliprotein. J Cell Biol 91: 315–319

    PubMed  CAS  Google Scholar 

  • Lundell DJ, Williams RC and Glazer AN (1981b) Molecular architecture of light harvesting antenna. In vitro assembly of the rod substructures of Synechococcus 6301 phycobilisomes. J Biol Chem 256: 3580–3592

    PubMed  CAS  Google Scholar 

  • Mazel D, Guglielmi G, Houmard J, Sidler W, Bryant DA and Tandeau de Marsac N (1986) Green light induces transcription of phycoerythrin operon in the cyanobacterium Calothrix 7601. Nucl Acids Res 14: 8279–8290

    PubMed  CAS  Google Scholar 

  • Nomura M, Gourse R and Baughman G (1984) Regulation of synthesis of ribosomes and ribosome components. Annu Rev Biochem 53: 75–117

    PubMed  CAS  Google Scholar 

  • Offner GD, Brown-Mason AS, Ehrhardt MM and Troxler RF (1981) Primary structure of phycocyanin from the unicellular rhodophyte Cyanidium caldarium. Complete amino acid sequence of the a subunit. J Biol Chem 256: 12167–12175

    PubMed  CAS  Google Scholar 

  • Offner GD and Troxler RF (1983) Primary structure of allophycocyanin from the unicellular rhodophyte, Cyanidium caldarium. The complete amino acid sequences of the a and ß subunits. J Biol Chem 258: 9931–9940

    PubMed  CAS  Google Scholar 

  • Ohad I, Schneider HAW, Gendel S and Bogorad L (1980) Light-induced changes in allophycocyanin. Plant Physiol 65: 6–12

    PubMed  CAS  Google Scholar 

  • Ohki K and Fujita Y (1979a) In vivo transformation of phycobiliproteins during photobleaching of Tolypothrix tenuis to forms active in photoreversible absorption changes. Plant Cell Physiol 20: 1341–1347

    CAS  Google Scholar 

  • Ohki K and Fujita Y (1979b) Photoreversible absorption changes of guanidine-HCl treated phycocyanin and allophycocyanin isolated from the blue-green alga Tolypothrix tenuis. Plant Cell Physiol 20: 483–490

    CAS  Google Scholar 

  • Ohki K and Fujita Y (1981) On the relationship between photocontrol of phycoerythrin formation and photoreversible pigments of Scheibe. Plant Cell Physiol 22: 347–357

    CAS  Google Scholar 

  • Öquist G (1974) Light induced changes in pigment composition of photosynthetic lamellae and cell-free extracts obtained from the blue-green alga Anacystis nidulans. Physiol Plant 30: 45–48

    Google Scholar 

  • Peterson RB, Dolan E, Calvert HE and Ke B (1981) Energy transfer from phycobiliproteins to photosystem I in vegetative cells and heterocysts of Anabaena variabilis. Biochim Biophys Acta 634: 237–248

    PubMed  CAS  Google Scholar 

  • Pilot TJ and Fox JL (1984) Cloning and sequencing of the genes encoding α and β subunits from the cyanobacterium Agmenellum quadruplicatum. Proc Natl Acad Sci USA 81: 6983–6987

    PubMed  CAS  Google Scholar 

  • Platt T (1986) Transcription termination and the regulation of gene expression. Annu Rev Biochem 55: 339–372

    PubMed  CAS  Google Scholar 

  • Porter G, Tredwell CJ, Searle GFW and Barber J (1978) Picosecond time-resolved energy transfer in Porphyridium cruentum. Part I. In the intact chloroplast. Biochim Biophys 501: 532–545

    Google Scholar 

  • Reithman HC, Mawhinnet TP and Sherman LA (1987) Phycobilisome associated glycoproteins in the cyanobacterium Anacystis nidulans R2. FEBS Lett 215: 209–214

    Google Scholar 

  • Reitzer LJ and Magasanak B (1986) Transcription of glnA in E. coli is stimulated by activators bound to sites far from the promoters. Cell 45: 785–792

    PubMed  CAS  Google Scholar 

  • Rümbeli R, Schirmer T, Bode W, Sidler W and Zuber H (1985) Crystallization of phycoeryth-rocyanin from the cyanobacterium Mastigocladus laminosus and a preliminary characterization of two crystal forms. J Mol Biol 186: 197–200

    PubMed  Google Scholar 

  • Rümbeli R, Suter S, Wirth M, Sidler W and Zuber H (1987) γ-N-Methylasparagine in phycobilisomes from the cyanobacteria Mastigocladus laminosus and Calothrix. FEBS Lett 221: 1–2

    Google Scholar 

  • Schäfer E and Briggs WR (1986) Photomorphogenesis from signal perception to gene expression. Photobiochem Photobiophys 12: 305–320

    Google Scholar 

  • Scheibe J (1972) Photoreversible pigment occurrence in blue green alga. Science 176: 1037–1039

    PubMed  CAS  Google Scholar 

  • Schirmer T, Bode W, Huber R, Sidler W and Zuber H (1985) X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structure. J Mol Biol 184: 257–277

    PubMed  CAS  Google Scholar 

  • Schirmer T, Huber R, Schneider M, Bode W, Miller M and Hackert M (1986) Crystal structure analysis and refinement at 2.5 Ã… of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implication for light-harvesting. J Mol Biol 188: 651–676

    PubMed  CAS  Google Scholar 

  • Sen R and Baltimore D (1986) Multiple nuclear factors interact with immunoglobulin enhancer sequences. Science 46: 705–716

    CAS  Google Scholar 

  • Sen R, Baltimore D and Sharp PA (1986) A nuclear factor that binds a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature 319: 154–158

    PubMed  Google Scholar 

  • Sherman LA and Van den Putte P (1982) Construction of a hybrid plasmid capable of replication in the bacterium E. coli and the cyanobacterium Anacystis nidulans. J Bact 150: 410–413

    PubMed  CAS  Google Scholar 

  • Sidler W, Kumpf B, Rüdiger W and Zuber H (1986) The complete amino acid sequence of C-phycoerythrin from the cyanobacterium Fremyella diplosiphon. Biol Chem Hoppe-Seyler 367: 627–647

    PubMed  CAS  Google Scholar 

  • Stevens SE Jr, and Paone DAM (1981) Accumulation of cyanophycin granules as a result of phosphate limitation in Agmenellum quadruplicatum. Plant Physiol 67: 716–719

    PubMed  CAS  Google Scholar 

  • Stevens SE Jr and Porter RD (1980) Transformation in Agmenellum quadruplicatum. Proc Natl Acad Sci USA 77: 6052–6056

    PubMed  CAS  Google Scholar 

  • Stormo GD (1986) Translation initiation. In: Reznikoff W and Gold L (eds) Maximizing gene expression. London: Butterworth Publishers

    Google Scholar 

  • Tandeau de Marsac N (1977) Occurrence and nature of chromatic adaptation in cyanobacteria. J Bact 130: 82–91

    PubMed  CAS  Google Scholar 

  • Tandeau de Marsac N (1983) Phycobilisomes and complementary chromatic adaptation in cyanobacteria. Bull Inst Pasteur 81: 201–254

    CAS  Google Scholar 

  • Tandeau de Marsac N and Cohen-Bazire G (1977) Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci USA 74: 1635–1639

    Google Scholar 

  • Taylor WE, Strauss DB, Grossman AD, Buston ZF, Gross CA and Burgess RR (1984) Transcription from a heat-inducible promoter causes heat shock regulation of the sigma subunit of RNA polymerase. Cell 38: 371–381

    PubMed  CAS  Google Scholar 

  • Thompson WF, Kaufman LS and Watson JC (1986) Induction of plant gene expression by light. BioEssays 3: 153–159

    Google Scholar 

  • Troxler RF, Ehrhardt M, Brown-Mason AS and Offner GD (1981) Primary structure of phycocyanin from the unicellular rhodophyte Cyanidium caldarium. Complete amino acid sequence of the β subunit. J Biol Chem 256: 12176–12184

    PubMed  CAS  Google Scholar 

  • Van Dyke MW and Dervan PB (1983) Methidiumpropyl-EDTA-Fe(II) and DNase I foot-printing report different small molecule binding site sizes on DNA. Nucl Acids Res 11: 5555–5567

    PubMed  Google Scholar 

  • Vogelmann TC and Scheibe J (1978) Action spectrum for chromatic adaptation in the blue-green alga Fremyella diplosiphon. Planta 143: 233–239

    CAS  Google Scholar 

  • Williams RC, Gingrich JC and Glazer AN (1980) Cynobacterial phycobilisomes. Particles of Synechocystis 6701 and two pigment mutants. J Cell Biol 85: 558–566

    PubMed  CAS  Google Scholar 

  • Wolk FC, Vonshak A, Kehoe P and Elhai J (1984) Construction of shuttle vectors capable of conjugad ve transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria. Proc Natl Acad Sci USA 81: 1561–1565

    PubMed  CAS  Google Scholar 

  • Wood NB and Haselkorn R (1979) Proteinase activity during heterocyst differentiation in nitrogen-fixing cyanobacteria. In: Cohen GN and Holzer H (eds) Limited Proteolysis in Microorganisms, pp 159–166. US DHEW Publication No. (NIH) 79–1591, Bethesda, MD

    Google Scholar 

  • Wood NB and Haselkorn R (1980) Control of phycobiliprotein proteolysis and heterocyst differentiation in Anabaena. J Bacteriol 141: 1375–1385

    PubMed  CAS  Google Scholar 

  • Wu C (1985) An exonuclease protection assay reveals heat shock element and TATA box DNA-binding proteins in crude nuclear extracts. Nature 317: 84–87

    PubMed  CAS  Google Scholar 

  • Yamanaka G and Glazer AN (1980) Dynamic aspect of phycobilisome structure. Phy-cobilisome turnover during nitrogen starvation in Synechococcus sp. Arch Microbiol 124: 39–47

    CAS  Google Scholar 

  • Yamanaka G and Glazer AN (1981) Dynamic aspects of phycobilisome structure: Modulation of phycocyanin content of Synechococcus phycobilisomes. Arch Microbiol 130: 23–30

    CAS  Google Scholar 

  • Yamanaka G, Lundell DJ and Glazer AN (1982) Molecular architecture of a light-harvesting antenna. Isolation and characterization of phycobilisome subassembly particles. J Biol Chem 257: 4077–4086

    PubMed  CAS  Google Scholar 

  • Yamanaka G, Glazer AN and Williams RC (1980) Molecular and architecture of a light-harvesting antenna. Comparison of wild type and mutant Synechococcus 6301 phycobilisomes. J Biol Chem 255: 11004–11010

    CAS  Google Scholar 

  • Yu M-H, Glazer AN, Spencer KG and West JA (1981) Phycoerythrins of the red algae Callithamnion. Variation in phycoerythrobilin and phycourobilin content. Plant Physiol 68: 482–488

    PubMed  CAS  Google Scholar 

  • Zuber H (1983) Structure and function of the light-harvesting phycobiliproteins from the cyanobacterium Mastigocladus laminosus. In: Papageorgiou G and Packer L (eds) Photosynthetic Prokaryotes: Cell Differentiation and Function, pp 23–41. Amsterdam: Elsevier Science Publishing Co

    Google Scholar 

  • Zuber H (1986) Structure of light harvesting antenna complexes of photosynthetic bacteria, cyanobacteria and red algae. Trends Biochem Sci 11: 414–419

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Grossman, A.R., Lemaux, P.G., Conley, P.B., Bruns, B.U., Anderson, L.K. (1988). Characterization of phycobiliprotein and linker polypeptide genes in Fremyella diplosiphon and their regulated expression during complementary chromatic adaptation. In: Govindjee (eds) Molecular Biology of Photosynthesis. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2269-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2269-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7517-6

  • Online ISBN: 978-94-009-2269-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics