Skip to main content

Reaction centers from three herbicide-resistant mutants of Rhodobacter sphaeroides 2.4.1: sequence analysis and preliminary characterization

  • Chapter
Molecular Biology of Photosynthesis

Abstract

Many herbicides that inhibit photosynthesis in plants also inhibit photosynthesis in bacteria. We have isolated three mutants of the photosynthetic bacterium Rhodobacter sphaeroides that were selected for increased resistance to the herbicide terbutryne. All three mutants also showed increased resistance to the known electron transfer inhibitor o-phenanthroline. The primary structures of the mutants were determined by recombinant DNA techniques. All mutations were located on the gene coding for the L-subunit resulting in these changes Ile229 → Met, Ser223 → Pro and Tyr222 → Gly. The mutations of Ser223 is analogous to the mutation of Ser264 in the D1 subunit of photosystem II in green plants, strengthening the functional analogy between D1 and the bacterial L-subunit. The changed amino acids of the mutant strains form part of the binding pocket for the secondary quinone, QB. This is consistent with the idea that the herbicides are competitive inhibitors for the QB binding site. The reaction centers of the mutants were characterized with respect to electron transfer rates, inhibition constants of terbutryne and o-phenanthroline, and binding constants of the quinone UQ0 and the inhibitors. By correlating these results with the three-dimensional structure obtained from x-ray analysis by Allen et al. (1987a, 1987b), the likely positions of o-phenanthroline and terbutryne were deduced. These correspond to the positions deduced by Michel et al. (1986a) for Rhodopseudomonas viridis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ATP:

adenosine 5′-triphosphate

Bchl:

bacteriochlorophyll

Bphe:

bacteriopheophytin

bp:

basepair

cyt c2+ :

reduced form of cytochrome c

DEAE:

diethylaminoethyl

EDTA:

ethylenediamine tetraacetic acid

Fe2+ :

non-heme iron atom

LDAO:

lauyl dimethylamine oxide

Pipes:

piperazine-N,N’-bis-I-ethane-sulfonic acid

PSII:

photosystem II

RC:

reaction center

SDS:

sodium dodecylsulfate

Tris:

tris(hydroxy-methyl)aminomethane

UQ0 :

2,3-dimethoxy-5-methyl benzoquinone

UQ10 :

ubiquinone 50

References

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987a) Structure of the reaction center from Rhodobacter sphaeroides R26: The cofactors. Proc Natl Acad Sci USA 84: 5730–5734

    Article  PubMed  CAS  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987b) Structure of the reaction center from Rhodobacter sphaeroides R26: The protein subunits. Proc Natl Acad Sci USA 84: 6162–6166

    Article  PubMed  CAS  Google Scholar 

  • Barber J (1987) Rethinking the structure of the photosystem two reaction center. Trends Biochem Sci 12: 123–124

    Article  Google Scholar 

  • Birnboim HC and Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl Acid Res 7: 1513–1523

    Article  CAS  Google Scholar 

  • Brown AE, Gilbert CW, Guy R and Arntzen CJ (1984) Triazine herbicide resistance in the photosynthetic bacterium Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 81: 6310–6314

    Article  PubMed  CAS  Google Scholar 

  • Brudvig GW, Worland ST and Sauer K (1983) Procedure for rapid isolation of photosynthetic reaction centers using cytochrome c affinity chromatography. Proc Natl Acad Sci USA 80: 683–686

    Article  PubMed  CAS  Google Scholar 

  • Bylina EJ and Youvan DC (1987) Genetic engineering of herbicide resistance: saturation mutagenesis of isoleucine 229 of the reaction center L subunit. Z Naturforsch 42c: 769–774

    Google Scholar 

  • Cogdell RJ, Monger TG and Parson WW (1975) Carotenoid triplet states in reaction centers from Rhodopseudomonas sphaeroides and Rhodospirillum rubrum. Biochim Biophys Acta 408: 189–199

    Article  PubMed  CAS  Google Scholar 

  • Crouse GF, Fritschauf A and Lehrach H (1983) An integrated and simplified approach to cloning into plasmids and single-stranded phages. Meth Enz 101: 78–89

    Article  CAS  Google Scholar 

  • DeVitry C and Diner BA (1984) Photoaffinity labeling of the azidoatrazine receptor site in reaction centers of Rhodopseudomonas sphaeroides. FEBS Lett 167: 327–331

    Article  CAS  Google Scholar 

  • Diner BA, Schenck CC and de Vitry C (1984) Effect of inhibitors, redox state and isoprenoid chain length on the affinity of ubiquinone for the secondary acceptor binding site in the reaction centers of photosynthetic bacteria. Biochim Biophys Acta 766: 9–20

    Article  CAS  Google Scholar 

  • Erickson JM, Rahire M, Bennoun P, Delepelaire P, Diner BA and Rochaix JD (1984) Herbicide resistance in Chlamydomonas reinhardtii results from a mutation in the chloro-plast gene for the 32-kilodalton protein of photosystem II. Proc Natl Acad Sci USA 81: 3617–3621

    Article  PubMed  CAS  Google Scholar 

  • Erickson JM and Rochaix JD (1985) In: Galan GA (ed.) Abstracts. First International Congress of Plant Molecular Biology, p 54/OR-25–02. Athens, USA: The University of Georgia Center for Education for the International Society for Plant Molecular Biology

    Google Scholar 

  • Erickson JM, Rahire M and Rochaix JD (1985) Herbicide resistance and cross-resistance; changes at three distinct sites in the herbicide-binding protein. Science 228: 204–207

    Article  PubMed  CAS  Google Scholar 

  • Evans MCW (1987) Plant reaction centre defined. Nature 327: 284–285

    Article  Google Scholar 

  • Feher G and Okamura MY (1978) Chemical composition and properties of reaction centers. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria pp. 349–386. New York: Plenum Press

    Google Scholar 

  • Gilbert CW, Williams JGK, Williams KAL and Arntzen CJ (1985) Herbicide action in photosynthetic bacteria. In: Steinbeck KE, Bonitz S, Arntzen CJ and Bogorad L (eds) Molecular Biology of the Photosynthetic Apparatus, pp 67–71. Cold Spring Harbor: Cold Spring Harbor Laboratory

    Google Scholar 

  • Golden SS and Haselkorn R (1985) Mutation to herbicide resistance maps within the psbA gene of Anacystis nidulans R2. Science 229: 1104–1107

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff P, Edelman M and Hallick RB (1984) Chloroplast-coded atrazine resistance in Solanum nigrum: psbA loci from susceptible and resistant biotypes are isogenic except for a single codon change. Nucl Acid Res 12: 9489–9496

    Article  CAS  Google Scholar 

  • Hanahan D (1985) Techniques for transformation of E. coli. In: Glover DM (ed) DNA Cloning, Vol 1, pp. 109–135. Washington DC: IRL Press

    Google Scholar 

  • Hanahan D and Meselson M (1980) Plasmid screening at high colony density. Gene 10, 63–67

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg J and Mcintosh L (1983) Molecular basis of herbicide resistance in Amaranthus hybridus. Science 222, 1346–1349

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg J, Bleecker A, Kyle DJ, Mcintosh L and Arntzen CJ (1984) The molecular basis of triazine-herbicide resistance in higher-plant chloroplasts. Z. Naturforsch. 39c, 412–420

    CAS  Google Scholar 

  • Holmes DS and Quigley M (1981) A rapid boiling method for the preparation of bacterial Plasmids. Anal Biochem 114, 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Johanningmeier U, Bodner U and Wildner GF (1987) A new mutation in the gene coding for the herbicide-binding protein in Chlamydomonas. FEBS Lett 211, 221–224

    Article  CAS  Google Scholar 

  • Kleinfeld D, Okamura MY and Feher G (1984) Electron transfer in reaction centers of Rhodopseudomonas sphaeroides. Determination of the charge recombination pathway of D+QAQ -B and free energy and kinetic relations between Q -A QB and QAQ -B . Biochem Biophys Acta 766, 126–140

    Article  PubMed  CAS  Google Scholar 

  • Kyle DJ (1985) The 32000 dalton QB protein of photosystem II. Photochem Photobiol 41, 107–116

    Article  CAS  Google Scholar 

  • Maniatis T, Fritsch EF and Sambrook J (1982) Molecular Cloning — A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Press

    Google Scholar 

  • McComb JC and Wraight CA (1983) Activity of analogues as primary and secondary quinones in photosynthetic reaction centers (Abstract). Biophys J 41, 39a

    Google Scholar 

  • McElroy JD, Mauzerall DC and Feher G (1974) Characterization of primary reactants in bacterial photosynthesis. II. Kinetic studies of the light-induced signal (g = 2.0026) and the optical absorbance changes at cryogenic temperatures. Biochem Biophys Acta 333, 261–278

    Article  PubMed  CAS  Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Meth Enz 101, 20–78

    Article  CAS  Google Scholar 

  • Messing J and Vieira J (1982) A new pair of M13 vectors for selecting either DNA strand of double-digested restriction fragments. Gene 19, 269–276

    Article  PubMed  CAS  Google Scholar 

  • Michel H, Epp O and Deisenhofer J (1986a) Pigment-protein interactions in the photosynthetic reaction centre from Rhodopseudomonas viridis. EMBO J 5, 2445–2451

    PubMed  CAS  Google Scholar 

  • Michel H, Weyer KA, Gruenberg H, Dugner I, Oesterhelt D and Lottspeich F (1986b) The ‘light’ and ‘medium’ subunits of the photosynthetic reaction centre from Rhodopseudomonas viridis: isolation of the genes, nucleotide and amino acid sequence. EMBO J 5, 1149–1158

    PubMed  CAS  Google Scholar 

  • Michel-Beyerle ME (ed.) (1985) Antennas and Reaction Centers of Photosynthetic Bacteria: Structure, Interactions, and Dynamics. New York: Springer-Verlag

    Google Scholar 

  • Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor: Cold Spring Harbor Press

    Google Scholar 

  • Nanba O and Satoh K (1987) Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypetpides and cytochrome b-559. Proc Natl Acad Sci USA 84, 109–112

    Article  PubMed  CAS  Google Scholar 

  • Okamura MY (1984) On the herbicide site in bacterial reaction centers. In: Thornber JP, Staehelin LA and Hallick RB (eds) Biosynthesis of the Photosynthetic Apparatus: Molecular Biology, Development and Regulation, pp 381–390. New York: Alan R Liss, Inc

    Google Scholar 

  • Okamura MY, Isaacson RA and Feher G (1975) The primary acceptor in bacterial photosynthesis: the obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 72, 3491–3495

    Article  PubMed  CAS  Google Scholar 

  • Okamura MY, Debus RJ, Kleinfeld D and Feher G (1982) Quinone binding sites in reaction centers from photosynthetic bacteria. In: Trumpower BC (ed) Functions of Quinones in Energy Conserving Systems, pp 299–317. New York: Academic Press

    Google Scholar 

  • Okamura MY, Abresch EC and Debus RJ (1985) Reaction centers from triazine resistant strains of Rhodopseudomonas sphaeroides: localization of the mutation site by protein hybridization experiments. Biochim Biophys Acta 810, 110–113

    Article  CAS  Google Scholar 

  • Okamura MY, Satoh K, Isaacson RA and Feher G (1987) Evidence of the primary charge separation in the D1D2 complex of photosystem II from spinach: EPR of the triplet state. In: Biggins J (ed) Progress in Photosynthesis Research, Vol 1, pp I.4.379–I.4.381. Dordrecht: Martinus Nijhoff Publishers

    Google Scholar 

  • Ort DR and Melandri BA (1982) Mechanism of ATP synthesis. In: Govindjee (ed.) Photosynthesis: Energy Conversion by Plant and Bacteria, Vol 1, pp 537–587. New York: Academic Press

    Google Scholar 

  • Ort DR (1986) Energy transduction in oxygenic photosynthesis: an overview of structure and mechanism. In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology, Vol 19: Photosynthesis III: Photosynthetic Membranes and Light Harvesting Systems, pp 143–196. New York: Springer-Verlag

    Google Scholar 

  • Paddock ML, Williams JC, Rongey SH, Abresch EC, Feher G and Okamura MY (1987) Characterization of three herbicide resistant mutants of Rhodopseudomonas sphaeroides 2.4.1: structure-function relationship. In: Biggins J (ed.) Progress in Photosynthesis Research, Vol 3 pp III.11.775–III.11.778. Dordrecht: Martinus Nijhoff Publishers

    Google Scholar 

  • Pfister K and Arntzen CJ (1979) The mode of action of photosystem II-specific inhibitors in herbicide-resistant weed biotypes. Z Naturforsch 34c, 996–1009

    CAS  Google Scholar 

  • Rawn JD (1983) Biochemistry. New York: Harper and Row Publishers

    Google Scholar 

  • Robinson H, Golden S, Brusslan J and Haselkorn R (1987) Functioning of photosystem II in mutant strains of the cyanobacterium Anacystis nidulans R2. In: Biggins J (ed.) Progress in Photosynthesis Research, Vol 4, pp IV.12.825–IV. 12.828. Dordrecht: Martinus Nijhoff Publishers

    Google Scholar 

  • Sanger F, Nicklen S and Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74, 5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Schenck CC, Sistrom WR and Capaldi RA (1986) structure-function studies in reaction centers: characterization of an herbicide resistance mutation in Rhodopseudomonas sphaeroides (Abstract). Biophys J 49, 486a

    Google Scholar 

  • Sinning I and Michel H (1987) Sequence analysis of mutants from Rhodopseudomonas viridis resistant to the herbicide terbutryn. Z Naturforsch 42c, 751–754

    Google Scholar 

  • Stein RR, Castellvi AL, Bogacz JP and Wraight CA (1984) Herbicide-quinone competition in the acceptor complex of photosynthetic reaction centers from Rhodopseudomonas sphaeroides: a bacterial model for PS-II-herbicide activity in plants. J Cell Biochem 24, 243–259

    Article  PubMed  CAS  Google Scholar 

  • Tischer W and Strotmann H (1977) Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochim Biophys Acta 460, 113–125

    Article  PubMed  CAS  Google Scholar 

  • Trebst A (1986) The topology of the plastoquinone and herbicide binding peptides of photosystem II in the thylakoid membrane. Z Naturforsch 41c, 240–245

    Google Scholar 

  • Trebst A (1987) The three-dimensional structure of the herbicide binding niche on the reaction center polypeptides from photosystem II. Z Naturforsch 42c, 742–750

    Google Scholar 

  • Velthuys BR (1981) Electron-dependent competition between platoquinone and inhibitors for binding to photosystem II. FEBS Lett 126, 277–281

    Article  CAS  Google Scholar 

  • Vermass WFJ, Arntzen CJ, Gu L-Q and Yu C-A (1983) Interactions of herbicide and azidoquinones at a photosystem II binding site in the thylakoid membrane. Biochim Biophys Acta 723, 266–275

    Article  Google Scholar 

  • Vermaas WFJ, Renger G and Arntzen CJ (1984) Herbicide/quinone binding interactions in photosystem II. Z Naturforsch 39c, 368–373

    CAS  Google Scholar 

  • Warncke K, Gunner MR, Braun BS, Yu C-A and Dutton PL (1987) Effects of hydrocarbon tail structure on the affinity of substituted quinones for the QA and QB sites in reaction center protein of Rhodopseudomonas sphaeroides R26 (Abstract). Biophys J 51, 124a.

    Google Scholar 

  • Williams JC, Steiner LA, Ogden RC, Simon MI and Feher G (1983) Primary structure of the M subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 80, 6505–6509

    Article  PubMed  CAS  Google Scholar 

  • Williams JC, Steiner LA, Feher G and Simon MI (1984) Primary structure of the L subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 81, 7303–7307

    Article  PubMed  CAS  Google Scholar 

  • Williams JC, Steiner LA and Feher G (1986) Primary structure of the reaction center from Rhodopseudomonas sphaeroides. Proteins 1, 312–325

    Article  PubMed  CAS  Google Scholar 

  • Wraight CA (1981) Oxidation-reduction physical chemistry of the acceptor quinone complex in bacterial photosynthetic reaction centers: evidence for a new model of herbicide activity. Israel J Chem 21, 348–354

    CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J and Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33, 103–119.

    Article  PubMed  CAS  Google Scholar 

  • Youvan DC, Bylina EJ, Alberti M, Begusch H, and Hearst JE (1984) Nucleotide and deduced polypeptide sequences of the photosynthetic reaction center, B870 antenna, and flanking polypeptides from Rhodopseudomonas capsulata. Cell 37, 949–957

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Paddock, M.L., Rongey, S.H., Abresch, E.C., Feher, G., Okamura, M.Y. (1988). Reaction centers from three herbicide-resistant mutants of Rhodobacter sphaeroides 2.4.1: sequence analysis and preliminary characterization. In: Govindjee (eds) Molecular Biology of Photosynthesis. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2269-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2269-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7517-6

  • Online ISBN: 978-94-009-2269-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics