Skip to main content

On Countercurrent Adsorption Separation Processes

  • Chapter
Adsorption: Science and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 158))

Abstract

As for most two-phase operations, also in adsorption separation processes continuous countercurrent contact is often preferred to the cyclic batch operation mode. When the separation factor of the mixture is small and the desired productivities are large, the first process is usually economically preferable with respect to the second one in spite of the additional cost associated with the more complex plant required by the countercurrent operation [1,2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ap :

pellet external surface (m2/m3)

ci :

fluid phase concentration (Kmol/m3)

cpi :

concentration in the macropores (Kmol/m3)

Ci :

fluid phase dimensionless concentration, cir

Cpi :

dimensionless concentration in the macropores, cpir

C K :

K-th constant state

C Et :

total dimensionless concentration in tne extract

C Rt :

total dimensionless concentration in the raffinate

dp :

particle equivalent diameter (m)

DL :

axial dispersion coefficient (m2/s)

DK :

dimensionless parameter relative to the K-th transition

DR:

desorbent requirement specific to the fresh feed, μFD

k:

global mass transfer coefficient (m/s)

Ki :

equilibrium constant of adsorption (m3/Kmol)

L:

column length (m)

N:

number of components to be separated, except desorbent

NC:

total number of components = N+1

Pe:

Peclet number, u dp/DL

qi :

σ δi θi

St:

Stanton number, Kap ∈ L/u

Si :

selectivity of component i with respect to component r,

SR:

solid requirement specific to the fresh feed, μF σ

TK :

k-th transition

t:

time (s)

t* :

switching time (s)

u:

fluid phase velocity referred to the total section area (m/s)

us :

solid phase velocity referred to the total section area (m/s)

V:

total volume of the column (m3)

x:

dimensionless axial coordinate, z/L

z:

axial coordinate (m)

α:

dimensionless perturbation parameter

Γ∞i :

adsorbed phase saturation concentration (Kmol/Kg)

Γi :

adsorbed phase concentration (Kmol/Kg)

δi:

Γi r

∈:

external void fraction

P :

intraparticle void fraction

* :

∈ + (i-∈)∈P

ε:

dimensionless fluid volumetric velocity, us/ur

θi :

coverage degree

μ:

volumetric flow rate ratio, uS/u

μ*:

μσ (1 - ∈P)/(1-μ ∈P)

ρi :

fluid molar density of component i, (Kmol/mol3)

ρS :

solid mass density, (Kg/m3)

σ:

capacity ratio, ρS Γ rr

σ*:

σ (1 - ∈) (1 - ∈P)/∈*

τ:

dimensionless time, t u/(∈ L)

ϕ1 :

ρir

ζ:

z/[L(1 - μ∈P)]

A,B:

components to be separated

E:

extract

R:

raffinate

F:

feed

D:

desorbent

a:

section a

b:

section b

r:

reference conditions

o:

initial condition

References

  1. P.C. Wankat, “Large Scale Adsorption and Chromatography”, C. R. C. Press, Boca Raton (1986).

    Google Scholar 

  2. D. M. Ruthven, “Principles of Adsorption and Adsorption Processes”, John Wiley, NY, (1984).

    Google Scholar 

  3. D. B. Brougnton, R. W. Neuzil, J. M. Pharis, C. S. Brearly, Chem. Eng. Prog., 66, 70, (1970).

    Google Scholar 

  4. D. B. Brougnton and S. A. Gembicky, in “Fundamental of Adsorption”, A. L. Myers and G. Belfort, Eds., Engineering Foundation, New York, 115, (1984).

    Google Scholar 

  5. C. B. Ching, D. M. Ruthven, K. Hidajat, Chem. Eng. Sci., 40, 1411 (1985).

    Article  CAS  Google Scholar 

  6. S. Y. Huang, C. K. Lin, W. H. Chang, W. S. Lee, Chem. Eng. Commun., 45, 291 (1986).

    Article  CAS  Google Scholar 

  7. A. I. Liapis, D. W. T. Rippin, AIChE J., 25, 455 (1979).

    Article  CAS  Google Scholar 

  8. H-K Rhee and S. K. Park, Proceeding of World Congress III of Chemical Engineering, Tokio, September 21–25, Vol. 2, 690 (1986).

    Google Scholar 

  9. K. Hidajat, C. B. Ching and D. M. Ruthven, Chem. Eng. Sci., 41 2953, (1986).

    Article  CAS  Google Scholar 

  10. Santacesaria E., Morbidelli M., Danise P., Mercenari M. and Carrà S., Ind. Engs. Chem. Proc. Des. Dev. 21, 440 (1982).

    Article  CAS  Google Scholar 

  11. Morbidelli M., Santacesaria E., G. Storti and S. Carrà, Ind. Eng. Chem. Proc. Des. Dev., 24, 83 (1985).

    Article  CAS  Google Scholar 

  12. Paludetto R., Storti G., Gamba G., Carrà S. and Morbidelli M., Ind. Engng. Chem. Research, 26, 2250 (1987).

    Article  CAS  Google Scholar 

  13. C. B. Ching and D. M. Ruthven, Chem. Eng. Sci., 40, 877 (1985)

    Article  CAS  Google Scholar 

  14. D. Tondeur, Percolation Processes; Theory and Applications. Nato Asi No. 33, p. 517, Sijthoff and Noordhoff, Alpen van Rijn, Holland (1981).

    Google Scholar 

  15. H. R. C. Pratt, “Countercurrent Separation Processes”, Elsevier, Amsterdam, (1967)

    Google Scholar 

  16. H-K Rhee, R. Aris and N. R. Amundson, Phil. Trans. Roy. Soc. London A269 187 (1971).

    Google Scholar 

  17. G. Storti, M. Nasi, S. Carrà and M. Morbidelli, Chem, Eng. Sci., in press (1988).

    Google Scholar 

  18. Villadsen J. V. and Michelsen M. L., Solution of Differential Equation Models by Polynomial Approximation, Prentice-Hall, Englewood Cliffs, New Jersey (1978).

    Google Scholar 

  19. Pratt H. R. C., Counter-Current Separation Processes. Elsevier, Holland (1967).

    Google Scholar 

  20. Storti G., Masi M., Paludetto R., Morbidelli M. and Carrà S., Computer and Chemical Engng., 12, 475 (1988).

    Article  CAS  Google Scholar 

  21. Morbidelli M., Storti G., Carrà S., Niederjaufner G. and Pontoglio A., Chem. Eng. Sci., 40, 1155, (1985).

    Article  CAS  Google Scholar 

  22. Morbidelli M., Storti G., Carrà S., Ind. Engng. Chem. Fundam. 25, 69 (1986).

    Google Scholar 

  23. Carrà S., Santacesaria E., Morbidelli M., Codignola F. and Di Fiore L., “Process for the Separation of Hetaxylene from Mixtures of Aromatic Hydrocarbons”, U. S. Pat. 4, 368, 347, Jan. 11 (1985).

    Google Scholar 

  24. Santacesaria E., Morbidelli M., Servida A., Storti G. and Carrà S., Ind. Engng. Chem. Proc. Des. Dev. 21, 446 (1982).

    Article  CAS  Google Scholar 

  25. Morbidelli M., Santacesaria E., Storti G. and Carrà S., Ind. Engng. Chem. Proc. Des. Dev., 24, 83 (1985).

    Article  CAS  Google Scholar 

  26. Buzzi Ferraris G. and E. Tronconi, Computers and Chemical Engng., 10, 129 (1986)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Storti, G., Masi, M., Morbidelli, M. (1989). On Countercurrent Adsorption Separation Processes. In: Rodrigues, A.E., LeVan, M.D., Tondeur, D. (eds) Adsorption: Science and Technology. NATO ASI Series, vol 158. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2263-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2263-1_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7514-5

  • Online ISBN: 978-94-009-2263-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics