Skip to main content

Thermal Swing Adsorption: Regeneration, Cyclic Behavior, and Optimization

  • Chapter
Adsorption: Science and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 158))

  • 1059 Accesses

Abstract

Adsorption processes are generally operated in a cyclic manner. Broad classes of cycles are named after the regeneration method. Thermal swing adsorption is based on regeneration by raising the temperature of the adsorbent and purging. Pressure swing adsorption involves regeneration by reducing the total pressure in the bed and usually purging. Pressure-swing adsorption is favored for adsorbates of fairly high volatility, while thermal-swing adsorption is best for adsorbates of moderate volatility. For adsorbates of very low volatility, the adsorbent is replaced rather than regenerated in place, with spent adsorbent possibly reactivated in a furnace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carter, J. W., Special Publication No. 33, Chemical Society (London), 1979, pp. 76–91.

    Google Scholar 

  2. Basmadjian, D., “The Adsorption Drying of Gases and Liquids,” in Mujumdar, A. S. (ed.), Advances in Drying, Vol. 3, Hemisphere, Washington, D. C., 1983.

    Google Scholar 

  3. Vermeiden, T., LeVan, M. D., Hiester, N. K., and Klein, G., “Adsorption and Ion Exchange,” in Perry, R. H., and Green, D. W. (eds.), Perry’s Chemical Engineers’ Handbook (6th edn.), McGraw-Hill, New York, 1984.

    Google Scholar 

  4. Ruthven, D. M., Principles of Adsorption and Adsorption Processes, Wiley, New York, 1984.

    Google Scholar 

  5. Wankat, P. C., Large-Scale Adsorption and Chromatography, Vol. I, CRC Press, Boca Raton, Florida, 1986.

    Google Scholar 

  6. Yang, R. T., Gas Separation by Adsorption Processes, Butterworth, Stoneham, Massachusetts, 1987.

    Google Scholar 

  7. Keller, G. E., Anderson, R. A., and Yon, C. M., “Adsorption” in Rousseau, R. W. (ed.), Handbook of Separation Process Technology, Wiley, New York, 1987.

    Google Scholar 

  8. James, D. H., and Phillips, G. S. G., J. Chem. Soc., 1954, 1066 (1954).

    Article  Google Scholar 

  9. Amundson, N. R., Aris, R., and Swanson, R., Proc. Roy. Soc. (London), A286, 129 (1965).

    Google Scholar 

  10. Rhee, H. K., and Amundson, N. R., Chem. Eng. J., 1, 241 (1970).

    Article  CAS  Google Scholar 

  11. Rhee, H. K., and Amundson, N. R., Chem. Eng. J., 1, 279 (1970).

    Article  Google Scholar 

  12. Rhee, H. K., and Amundson, N. R., Chem. Eng. J., 3, 22 (1972).

    Article  CAS  Google Scholar 

  13. Rhee, H. K., and Amundson, N. R., Chem. Eng. J., 3, 121 (1970).

    Google Scholar 

  14. Aris, R., and Amundson, N. R., Mathematical Methods in Chemical Engineering: Volume 2. First Order Partial Differential Equations with Applications, Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

    Google Scholar 

  15. Harwell, J. H., Liapis, A. I., Litchfield, R. J., and Hanson, D. T., Chem. Eng. Sci., 35, 2287 (1980).

    Article  CAS  Google Scholar 

  16. Sweed, N. H., “Nonisothermal and Nonequilibrium Fixed Bed Sorption” in Rodrigues, A. E., and Tondeur, D., Percolation Processes: Theory and Applications, Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands, 1981, pp. 329–362.

    Google Scholar 

  17. Friday, D. K., and LeVan, M. D., AIChE J., 28, 86 (1982).

    Article  CAS  Google Scholar 

  18. Holland, C. D., and Liapis, A. I., Computer Methods for Solving Dynamic Separation Problems, McGraw-Hill, New York, 1983, pp. 404–414.

    Google Scholar 

  19. Friday, D. K., and LeVan, M. D., AIChE J., 30, 679 (1984).

    Article  CAS  Google Scholar 

  20. LeVan, M. D., and Friday, D. K., in Myers, A. L., and Belfort, G. (eds.), Fundamentals of Adsorption, Engineering Foundation, New York (1984), pp. 295–304.

    Google Scholar 

  21. Wheelwright, S. M., Vislocky, J. M., and Vermeulen, T., in Myers, A. L., and Belfort, G. (eds.), Fundamentals of Adsorption, Engineering Foundation, New York (1984), pp. 721–729.

    Google Scholar 

  22. LeVan, M. D., McAvoy, R. L., Jr., Davis, M. M., and Dolan, W. B., in Liapis, A. I. (ed.), Fundamentals of Adsorption, Engineering Foundation, New York (1987), pp. 349–358.

    Google Scholar 

  23. Davis, M. M., and LeVan, M. D., AIChE J., 33, 470 (1987).

    Article  CAS  Google Scholar 

  24. Davis, M. M., McAvoy, R. L., Jr., and LeVan, M. D., Ind. Eng. Chem. Research, 27, 1229 (1988).

    Article  CAS  Google Scholar 

  25. LeVan, M. D., and Vermeulen, T., J. Phys. Chem., 85, 3247 (1981).

    Article  CAS  Google Scholar 

  26. Grayson, H. G., Ind. Eng. Chem., 47, 41 (1955).

    Article  CAS  Google Scholar 

  27. Leavitt, F. W., Chem. Eng. Prog., 58(8), 54 (1962).

    CAS  Google Scholar 

  28. Getty, R. J., and Armstrong, W. P., Ind. Eng. Chem. Proc. Des. Den., 3, 60 (1964).

    Article  CAS  Google Scholar 

  29. Pan, C. Y., and Basmadjian, D., Chem. Eng. Sci., 25, 1653 (1970).

    Article  CAS  Google Scholar 

  30. Pan, C. Y., and Basmadjian, D., Chem. Eng. Sci., 26, 45 (1971).

    Article  CAS  Google Scholar 

  31. Basmadjian, D., Ha, D., and Pan, C. Y., Ind. Eng. Chem. Process Des. Dev., 14, 328 (1975).

    Article  CAS  Google Scholar 

  32. Chi, C. W., AIChE Symp. Ser. No. 179, 74, 42 (1978).

    Google Scholar 

  33. Basmadjian, D., Ha, D., and Prouix, D. P., Ind. Eng. Chem. Process Des. Dev., 14, 340 (1975).

    Article  CAS  Google Scholar 

  34. Kumar, R., and Dissinger, G. R., Ind. Eng. Chem. Process Des. Dev., 25, 456 (1986).

    Article  CAS  Google Scholar 

  35. Schork, J. M., and Fair, J. R., Ind. Eng. Chem. Research, 27, 457 (1988).

    Article  CAS  Google Scholar 

  36. Jacob, P., and Tondeur, D., Chem. Eng. J., 26, 143 (1983).

    Article  CAS  Google Scholar 

  37. Carter, J. W., AIChE J., 21, 380 (1975).

    Article  CAS  Google Scholar 

  38. Friday, D. K., and LeVan, M. D., AIChE J., 31, 1322 (1985).

    Article  CAS  Google Scholar 

  39. Schoofs, G. R., Ind. Eng. Chem. Process Des. Dev., 25, 800 (1986).

    Article  CAS  Google Scholar 

  40. Basmadjian, D., Can. J. Chem. Eng., 53, 234 (1975).

    Article  CAS  Google Scholar 

  41. Chao, J., Ph.D. Dissertation, University of New Brunswick, 1981. See reference 4.

    Google Scholar 

  42. Davis, M. M., Ph.D. Dissertation, University of Virginia, 1987.

    Google Scholar 

  43. Davis, M. M., and LeVan, M. D., AIChE 1988 Spring Meeting, New Orleans, Louisiana.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

LeVan, M.D. (1989). Thermal Swing Adsorption: Regeneration, Cyclic Behavior, and Optimization. In: Rodrigues, A.E., LeVan, M.D., Tondeur, D. (eds) Adsorption: Science and Technology. NATO ASI Series, vol 158. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2263-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2263-1_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7514-5

  • Online ISBN: 978-94-009-2263-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics