Skip to main content

The Geometry of Crustal Shortening in the Western Alps

  • Chapter
Tectonic Evolution of the Tethyan Region

Part of the book series: NATO ASI Series ((ASIC,volume 259))

Abstract

The use of structural data to define the convergence history across orogenic belts has been handicapped by the absence of a coherent tectonic model within which it is possible to unravel the relative horizontal displacements, their lateral continuity and compatibility. Such a model can be provided by concepts of linked thrust analysis, this contribution applies this working hypothesis to the Eocene-Pliocene tectonic evolution of the western Alps. Deformation commenced with the obduction of oceanic material and a sheet of previously subducted continental crust onto the Franco- Swiss crust. Locally displacements were transferred onto the base of shelf sediments which were carried out onto the external zones as the Prealpine klippen. The obduction complex was then disrupted by back thrusts and then carried forwards by displacements in the frontal Pennine and external zones. Thrusting terminated in the Jura in latest Miocene times. Throughout the deformation the Franco-Swiss continent was transected by thrusts which followed several mid-crustal detachment levels. A series of balanced sections together with an appraisal of thrust sheet distributions suggest that displacements exceeded 400 km on a WNW-ESE axis in the western Alps at a rate of about 1 cm.yr-1. Substantial volumes of Penninic crust must have been subducted beneath the Po plain requiring wholesale transformation to eclogite facies assemblages to inhibit isostatic compensation. Using this model for western Alpine orogenesis the central Alps are interpreted as an oblique ramp zone within which oblique folds, thrust sheet rotations and complex strain patterns develop. Two dimensional section restoration will not be appropriate in this sector. However, displacements can be transferred onto the base of the Austroalpine sheets in the eastern Alps and, via transfer faults, onto the Apennine thrusts to the south.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dewey, J.F., Pitman,W.C., Ryan, W.B.F. & Bonnin, J. 1973. ‘Plate tectonics and the evolution of the Alpine system’, Bull. Geol. Soc. Am. 84, 3137–3180.

    Article  Google Scholar 

  2. Lubscher, H.P., 1971. ‘The large scale kinematics of the western Alps and northern Apennines and its palinspastic implications’. Am. J. Sci. 271, 193–226.

    Article  Google Scholar 

  3. England, P.C., 1986. ‘Deformation of continents’, Nature 320, 399–400.

    Article  Google Scholar 

  4. Bearth, P., 1952. ‘Geologie und petrographie des Monte Rosa’, Beitr, Geol. Karte Schweiz n.f. 96, pp.94.

    Google Scholar 

  5. Milnes, A.G., Greller, M. & Muller, R., 1981: ‘Sequence and style of major post nappe structures, Simplon-Pennine Alps’, J. Struct. Geol.3, 411–420.

    Article  Google Scholar 

  6. England, P.C., Houseman, G. & Sonder, C., 1985: ‘Length scales for continental deformation in convergent, divergent and strike-slip environments: analytical and approximate solutions for a thin viscous sheet model’, J. Geophys. Res. 90, 3551–3557.

    Article  Google Scholar 

  7. MacKenzie, D. & Jackson, J.1986. ‘A block model of distributed deformation by faulting’, J. Geol. Soc. London 143, 349–353.

    Article  Google Scholar 

  8. Argand, E., 1916. ‘Sur l’arc des Alpes occidentales’, Eclog. Geol. Helv. 14, 145–191.

    Google Scholar 

  9. Blundell, D.J., 1984. ‘Deformation of the Caledonide lithosphere of northwest Scotland’, Tectonophysics 109, 137–145.

    Article  Google Scholar 

  10. Bally, A.W., Gordy, P.L., & Stewart, G.A., 1966. ‘Structure, seismic data, and orogenic evolution of southern Canadian Rocky Mountains’, Bull. Can. Petrol. Geol. 14, 337–381.

    Google Scholar 

  11. Dahlstrom, C.D.A., 1969. ‘Balanced ‘cross sections’, Can. J. Earth Sci. 6, 743–757.

    Article  Google Scholar 

  12. Boyer, S.J. & Elliott, D. 1982. ‘Thrust systems’, Bull. Am. Assoc. Petrol. Geol. 66, 1196–1230.

    Google Scholar 

  13. Hossack, J.R. 1979. ‘The use of balanced cross sections in the calculation of orogenic contraction: a review’, J. Geol. Soc. London 136, 705–711.

    Article  Google Scholar 

  14. Butler, R.W.H. 1985. ‘Thrust tectonics: a personal view’, Geol. Mag. 122, 223–232.

    Article  Google Scholar 

  15. Ramsay, J.G. 1980. ‘Shear zone geometry: a review’, J. Struct. Geol. 2, 83–99.

    Article  Google Scholar 

  16. Shackleton, R.M. & Ries, A.C. 1984. ‘The relation between regionally consistent stretching lineations and plate motions’, J. Struct. Geol. 6, 111–117.

    Article  Google Scholar 

  17. Heim, A. 1921. Geologie der Schweiz 2/1, Tauchnitz, Leipzig.

    Google Scholar 

  18. Coward, M.P. & Potts, G.J. 1983: ‘Complex strain patterns developed at the frontal and lateral tips to shear zones and thrust zones’, J. Struct. Geol. 5, 383–399.

    Article  Google Scholar 

  19. Goguel, J. 1962. ‘L’interpretation de l’arc des Alpes occidentales’, Bull Soc. Geol. France 7, 20–33.

    Google Scholar 

  20. Laubscher, H.P. & Bernoulli, D. 1982. ‘History and deformation of the Alps’, in Hsu, K.J. (ed.) Mountain Building Processes, Academic Press, London, 169–180.

    Google Scholar 

  21. Ricou, L.E., 1984. ‘Les Alpes occidentales: chaine de decrochement’, Bull. Soc. Geol. France 26, 861–874.

    Google Scholar 

  22. Malavieille, J., Lacassin, R. & Mattauer, M. 1984. ‘Signification tectonique des lineations d’allongement dans les Alpes occidentales’, Bull. Soc. Geol. France 26, 895–906.

    Google Scholar 

  23. Butler, R.W.H. 1985. ‘The restoration of thrust systems and displacement continuity around the Mont Blanc massif, NW external Alpine thrust belt’, J. Struct. Geol. 7, 569–582.

    Article  Google Scholar 

  24. Beach, A., 1981. ‘Thrust structures in the eastern Dauphinois zone (French Alps) north of the Pelvoux massif’, J. Struct. Geol. 3, 299–308.

    Article  Google Scholar 

  25. Barbier, 1948. ‘Les zones ultradauphinois et subbrianconnais entre l’Arc et l’Isere’, Mem. Serv. Carte geol. det. France, pp.291.

    Google Scholar 

  26. Tricart, P., 1980. ‘Tectoniques superposees dans les Alpes occidentales, au sud du Pelvoux. Evolution structurale d’une chaine de collision’, These, Univ. Strasbourg.

    Google Scholar 

  27. Debelmas, P., & Kerckhove, C., 1980. ‘Les Alpes franco-italiennes’, Geol. Alpine 56, 21–58.

    Google Scholar 

  28. Landry, P., 1978. ‘Donnees nouvelles sur la couverture sedimentaire des massifs externes au sud du Mont-Blanc’, Geol. Alpine 54, 83–112.

    Google Scholar 

  29. Antoine, P., 1971. ‘La zone des breches de Tarentaise entre Borug St. Maurice (Vallee de l’Isere) et la frontiere Italo-Suisse’, Geol. Alpine 9, pp.367.

    Google Scholar 

  30. Ellenberger, F., 1958. ‘Etude geologique du pays de Vanoise’, Mem. expl. Carte Geol.France, pp.561.

    Google Scholar 

  31. Platt, J.P., & Lister, G.S., 1985. ‘Structural history of high pressure metamorphic rocks in the southern Vanoise massif, French Alps, and their relation to Alpine tectonic events’, J. Struct. Geol. 7, 19–35.

    Article  Google Scholar 

  32. Caby, R., Kienast, J.R., & Saliot, P., 1978. ‘Structure, metamorphisme et modele d’evolution tectonique des Alpes occidentales’, Rev. Geog. Phys. Geol. Dyn. 20, 307–322.

    Google Scholar 

  33. Caby, R., 1981. ‘Le Mesozoique de la zone du Combin en Val d’Aosta (Alpes graies): imbrication tectoniques entre series issues des domaines pennique, austroalpin et oceanique’, Geol. Alpine 57, 5–13.

    Google Scholar 

  34. Banks, C., & Warburton, J., 1986. ‘Passive roof duplex geometry in the frontal structure of the Kirthar and Sulaiman mountain belts, Pakistan’, J. Struct. Geol. 8.

    Google Scholar 

  35. Chopin, C., & Monie, P., 1984. ‘A unique magnesiochloritoid bearing, high pressure assemblage from the Monte Rosa, western Alps: petrologic and 40Ar–39Ar radiometric study’, Contrib. Min. Pet. 87, 388–398.

    Article  Google Scholar 

  36. Vearncombe, J., 1985. ‘The structure of the Gran Paradiso basement massif and its envelope, western Alps’, Eclog. Geol. Helv. 78, 49–72.

    Google Scholar 

  37. Allen, P.A., Homewood, P., & Williams, G.D. 1985. ‘Structural and sedimentological evolution of the Molasse Basin of western Switzerland’, Abstr. 6th. Int. Assoc. Sedimentol. Reg. Enr. Mtg. Llieda, 15–17.

    Google Scholar 

  38. Richardson, S.W., & England, P.C., 1979. ‘Metamorphic consequences of crustal ecologite production in overthrust orogenic zones’, Earth Planet. Sci.Lett. 42, 183–190.

    Article  Google Scholar 

  39. Ahrens, T.J., & Schubert, G., 1975. ‘Gabbro-eclogite reaction rate and its geophysical significance’, Rev. Geophys. Space Phys. 13, 383–400.

    Article  Google Scholar 

  40. Steck, A., 1984. ‘Structures de deformations tertiaires dans les Alpes centrales’, Eclog. Geol. Helv. 77, 55–100.

    Google Scholar 

  41. White, S.H., & Knipe, R.J., 1978. ‘Transformation- and reaction-enhanced ductility in rocks’, J. Geol. Soc. London 135, 513–516.

    Article  Google Scholar 

  42. Reutter, K.J., & Groscurth, J., 1978. ‘The pile of nappes in the northern Apennines, its unravelment and emplacement’, in Cloos, H., Roeder, D. & Schmidt, K. (eds.) Alps, Apennines, Hellenides, Inter Union Comm. Geodyn. Sci. Rep. 38, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 234–243.

    Google Scholar 

  43. Klootwijk, C.T. & Van Den Berg, J., 1975. ‘The rotation of Italy: preliminary palaeomagnetic data from the Umbrian sequence, northern Apennines’, Earth Planet. Scill. Lett. 25, 263–273.

    Article  Google Scholar 

  44. Biju-Duval, B., Letouzey, J., & Montadert, L., 1978. ‘Structure and evolution of the Mediterranean basins’, in Hsu, K.J. et al. (eds.) Initial Reports of the Deep Sea Drilling Project 42 (1), US Printing Office, Washington, 951–984.

    Google Scholar 

  45. Savostin, L.A., Sibuet, J.C., Zonenshain, L.P., Le Pichon, X. & Roulet, M.J., 1986. ‘Kinematic evolution of the Tethys belt from the Atlantic ocean to the Pamirs since the Triassic’, Tectonophysics 123, 1–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Butler, R.W.H. (1989). The Geometry of Crustal Shortening in the Western Alps. In: Şengör, A.M.C. (eds) Tectonic Evolution of the Tethyan Region. NATO ASI Series, vol 259. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2253-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2253-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7509-1

  • Online ISBN: 978-94-009-2253-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics