Skip to main content

Velocity and Scalar Measurements in Model and Real Gas Torbine Combustors

  • Chapter
Instrumentation for Combustion and Flow in Engines

Part of the book series: NATO ASI Series ((NSSE,volume 154))

Abstract

This paper reviews recent measurements and the consequent understandings on the fundamental processes of the flow, mixing and combustion in turbulent reacting flows typical of gas-turbine combustors. The emphasis is on highly recirculating, swirling, non-premixed flames within model and real combustors but isothermal flows relevant to gas-turbine combustors are also analysed.

Finally the capabilities of optical and probe techniques for making measurements in gas-turbine combustors are discussed on the basis of the results of Heitor and Whitelaw (1986) in terms of the contributions that they can make to improve knowledge on the theory and modelling of these flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • H. Altgeld, W.P. Jones and J. Wilhelmi (1983). Velocity measurements in a confined swirl driven recirculating flow. Exp. in Fluids, 1, pp.73–78.

    Article  ADS  Google Scholar 

  • K. Atkinson, Z.A. Khan and J.H. Whitelaw (1983). Experimental investigation of opposed jets discharging normally into a cross-stream. J. Fluid Mech., 115, pp. 493–504.

    Article  ADS  Google Scholar 

  • A.M. Attya and J.H. Whitelaw (1984). Measurements and calculations of preheated and unpreheated confined kerosene spray flames. Comb. Sci. and Tech., 40, pp. 139–145.

    Article  Google Scholar 

  • J.K. Bhangu, D.M. Snape and B.R. Eardley (1983). The design and development of a low emissions transply combustor for the civil spey engine. AGARD-CP353, paper No. 23.

    Google Scholar 

  • A.F. Bicen, M.V. Heitor and J.H. Whitelaw (1986). Velocity and temperature measurements in a can-type gas-turbine combustor. AGARD-CP-399, paper 14.

    Google Scholar 

  • A. F. Bicen and W.P. Jones (1987). Velocity characteristics of isothermal and combusting flows in a model combustor. Comb. Sci. and Tech.

    Google Scholar 

  • A.F. Bicen, J.J. Moguirk and J.M.L.M. Palma (1987). Primary-zone flow characteristics of an isothermal model combustor. Proc. Nato-ASI on Instrumentation for combustion and flow in engines. September 14–26, Vimeiro, Portugal

    Google Scholar 

  • A.F Bicen, D. Tse and J.H. Whitelaw (1987). Flow characteristics of a model annular combustor. AGARD-CPP-422, paper 14.

    Google Scholar 

  • T.T. Bowden and J.H. Pearson (1983). The influence of fuel composition upon soot emissions and flame radiation in a model gas-turbine combustor. Paper C70–83 — Inst. Mech. Eng., Oxford — 1983.

    Google Scholar 

  • F. Boysan, W.H. Ayers, J. Swithenbank and Z. Pan (1982). Three-dimensional model of spray combustion in gas turbine combustors. J. Energy, 6, pp. 368–375.

    Article  Google Scholar 

  • R.D. Brum and G.S.Samuelsen (1982). Two-component laser anemometry measurements in a non-reacting and reacting complex flow model combustor. Combustion Institute, Western States Section, paper WSS-C182–53.

    Google Scholar 

  • R.D. Brum, E.T. Seiler, J.E. LaRue and G.S. Samuelsen (1983). Instantaneous two-component Laser anemometry and temperature measurements in a complex flow model combustor. AIAA Paper 83–0334.

    Google Scholar 

  • D.L. Burrus, W. Shyy and M.E. Braaten (1987). Numerical models for analytical predictions of combustor aerothermal performance characteristics. AGARD-CPP-422, paper 25.

    Google Scholar 

  • M.G. Carvalho and P.J.M Ooelho (1987). Radiation transfer in gas turbine combustors. AGARD-CPP-422, paper 19.

    Google Scholar 

  • C. Casci, A. Coghe, V. Ghezzi and S. Pasini (1973). An experimental research on the behaviour of a continuous flow combustion chamber. AGARD-CP-125, paper 26.

    Google Scholar 

  • R.S. De Chair, C.G.W. Sheppard and M. Whittaker (1976). A note on carbon monoxide oxidation with particular reference to gas turbine combustion. Comb. Sci. and Tech., 12, pp. 245–247.

    Article  Google Scholar 

  • P. Chleboun, P.J. Craig, F.B. Sebbowa and C.G.W. Sheppard (1982). A study of transverse turbulent jets in a cross flow. Comb. Sci. and Tech., 29, pp. 107–111.

    Article  Google Scholar 

  • P. Chleboun, S.N. Nasser, F.B. Sebbowa and C.G.W. Sheppard (1983). An investigation of the interaction between multiple dilution jets and combustion products. AGARD-CP-353, Paper 26.

    Google Scholar 

  • A.E. Clarke, A.J. Gerrard and L.A. Holliday (1963). Some experiences in gas turbine combustion chamber practice using water flow visualisation techniques. 9th Symposium (Intl.) on Combustion, 1963, pp. 878–891.

    Google Scholar 

  • S.M. Correa(1984). Prediction of an axisymmetric combusting flow. AIAA J., 22, pp. 1602–1608.

    Article  ADS  Google Scholar 

  • J. Coupland and C. H. Priddin (1986). Modelling the flow and combustion in a production gas turbine combustor. Turbulent Shear Flows-5, Springer-Verlag.

    Google Scholar 

  • D. Crabb and J.H. Whitelaw (1979). The influence of geometric asymmetry on the flow downstream of a row of jets discharging normally into a free stream. J. Heat Transfer, 10, 183–185.

    Article  Google Scholar 

  • R.R. Dills, and P.S. Follansbee (1979). Use of thermocouples for gas temperature measurements in gas turbine combustor. NBS Special Publ. 561: Proc. 10th Materials Res. Symp. on Characterisation of High Temperature Vapor and Gases, Maryland — Sept., 1978.

    Google Scholar 

  • A.C. Eckbreth, G.M. Dobbs, J.H. Stufflebeam and P.A. Tellex (1984). CARS temperature and species measurements in augmented jet engine exhausts. Applied Optics, 23, pp. 1328–1339.

    Article  ADS  Google Scholar 

  • R.B. Edelman and O.F. Fortune (1969). A quasi-global chemical kinetic model for the finite rate combustion of hydrocarbon fuels with application to turbulent burning and mixing in hypersonic engines and nozzles. AIAA Paper No. 69–86.

    Google Scholar 

  • R.B. Edeiman, P.T. Harsha and S.N. Somdtolocha (1981). Modelling techniques for the analysis of ramjet combustion processes. AIAA J., 19, pp. 601–609.

    Article  ADS  Google Scholar 

  • Y. el Banhawy and J.H. Whitelaw (1980a). Assessment of an approach to the calculation of the flow properties in spray flames. Combustor Modelling. AGARD-CP-275, Paper No. 12.

    Google Scholar 

  • Y. el Banhawy and J.H. Whitelaw (1980b). Calculation of flow properties of a confined kerosene spray flame. AIAA J. 18, pp. 1503–1510.

    Article  ADS  Google Scholar 

  • Y. el-Banhawy and J.H. Whitelaw (1981). Experimental study of the interaction between a fuel spray and surrounding combustion air. Comb, and Flame 42, pp. 253–275.

    Article  Google Scholar 

  • M.P. Escudier, J. Bornstein and N. Zehnder (1980). Observations and LDA measurements of confined turbulent vortex flow. J. Fluid Mech., 98, pp. 49–63.

    Article  ADS  Google Scholar 

  • M.P. Escudier and J.J. Keller (1985). Recirculation in swirling flow: a manifestation of vortex breakdown. AIAA J., 23, pp. 111–116.

    Article  ADS  Google Scholar 

  • M.P. Escudier and N. Zehnder (1982). Vortex-flow regimes. J. Fluid Mech., 115, pp. 105–121.

    Article  ADS  Google Scholar 

  • B.C.R. Ewan, F. Boysan and J. Swithenbank (1984). Closing the gap between finite difference and stirred reactor combustor modelling procedures. 20th Symposium (Intl.) on Combustion.

    Google Scholar 

  • J.H. Faler and S. Leibovich (1978). An experimental map of the internal structure of a vortex breakdown. J. Fluid Mech., 86, pp. 313–335.

    Article  ADS  Google Scholar 

  • R.S. Fletcher and J.B. Heywood (1971). A model for nitric oxide emissions from aircraft gas turbine engines. AIAA Paper No. 71–123. AIAA 9th Aerospace Sciences Meeting, New York, N.W.-Jan./25–27, 1971.

    Google Scholar 

  • S. Fletcher and R.D. Siegel (1971). The control of oxides of nitrogen emissions from aircraft gas turbines. NREC Report 1162–2. Also, Federal Aviation Authority report FAA-RD-71–111–2.

    Google Scholar 

  • S. Fletcher, R.D. Siegel and E.K. Bastress (1971). The control of oxides of nitrogen emissions from aircraft gas turbines. NREC report 1162–1. Also, Federal Aviation Authority report FAA-RD-71–111–1.

    Google Scholar 

  • C.O. Polayan and J.H. Whitelaw (1977). Impingement cooling and its application to combustor design. Proc. Tokyo Joint Gas Turbine Congress, pp. 69–76.

    Google Scholar 

  • N.J. Friswell (1979). The influence of fuel composition on smoke emissions from gas-turbine-type combustor: effects of combustor design and operating conditions. Comb. Sci. and Tech., 9, pp. 119–127.

    Article  Google Scholar 

  • S. Godoy (1982). Turbulent diffusion flames. Ph.D. Thesis, University of London.

    Google Scholar 

  • R.J. Goldstein, K.Y. Lau and C.C. Leung (1983). Velocity and turbulence measurements in combustion systems. Exp. in Fluids, 1, pp. 93–99.

    Article  ADS  Google Scholar 

  • F.C. Gouldin, J.S. Depsky and S.L. Lee (1985). Velocity field characteristics of a swirling flow combustor. AIAA, 23, pp. 95–102.

    Article  Google Scholar 

  • A.S. Green and J.H. Whitelaw (1980). Measurement and calculations of the isothermal flow in axisymmetric models of combustion geometries. J. Mech. Eng. Sci. 22, pp. 119–124.

    Article  Google Scholar 

  • A.S. Green and J.H. Whitelaw (1983). Isothermal models of gas-turbine combustors. J. Fluid Mech. 126, pp. 399–412.

    Article  ADS  Google Scholar 

  • W.L.H. Hallet and R. Gunther (1983). The turbulent structure of swirlling flow in a sudden expansion. Proc. 4th Symp. Turb. Shear Flows, pp. 19.25–19.31. Karlsruhe, Sept.-1983.

    Google Scholar 

  • R.N. Halthore and F.C. Gouldin (1984). Laser scattering measurements for density in a swirling flow combustor. AIAA-84–0199. AIAA: 22nd Aerospace Sciences Meeting, Jan. 9–12-Reno, Nevada.

    Google Scholar 

  • M.V. Heitor (1985). Experiments in turbulent reacting flows. Ph. D. Thesis, University of London.

    Google Scholar 

  • M.V. Heitor (1988). The simultaneous measurement of velocity and scalar properties. In “Instrumentation for combustion and flow in engines”, ed. Durão et al, Martinus Nijhof Publ.

    Google Scholar 

  • M.V. Heitor, A.M.K.P. Taylor and J.H. Whitelaw (1985). Simultaneous velocity and temperature measurements in a premixed flame. Exp. in Fluids, 3. Also, Proc. ASME 105th Annual Winter Meeting, New Orleans, Dec. 9–13 (1984).

    Google Scholar 

  • M.V. Heitor and J.H. Whitelaw (1986). Velocity, temperature and species characteristics of the flow in a gas-turbine combustor. Comb, and Flame, 64, pp. 1–32.

    Article  Google Scholar 

  • T.A. Jackson and G.S. Samuelsen (1984). An evaluation of fuel spray performance in a swirl stabilised combustor using optical methods for drop sizing. Paper AIAA-84–1318, AIAA-SAE-ASME, 20th Joint Propulsion Conference, June, 11–13, 1984-Cincinnati — Ohio.

    Google Scholar 

  • S.I. Janjua, D.K. McLaughlin, T.W. Jackson and D.G. Lilley (1983). Turbulence measurements in confined jets using a rotating single-wire probe technique. AIAA J., 21, pp. 1609–1610.

    Article  ADS  Google Scholar 

  • A.K. Jasuja (1983). Effects of airblast atomiser design upon spray quality. AGARD-CP-353, Paper 12.

    Google Scholar 

  • R.E. Jones (1978). Gas turbine engine emissions - problems, progress and future. Prog. Energy Combust. Sci., 4, pp. 73–113.

    Article  Google Scholar 

  • W.P. Jones (1980). Models for turbulent flows with variable density and combustion. In: Prediction methods for turbulent flows, ed. W. Kollman, Hemisphere Pub. Corp., pp. 379–421.

    Google Scholar 

  • W.P. Jones, W.C Clifford, C.H. Priddin and R. De Chair (1977). A comparison between predicted and measured species concentrations and velocities in a research combustor. Proc. AGARD 50th Meeting, Turkey. Paper 40.

    Google Scholar 

  • W. P, Jones and J. J. McGuirk (1980). Mathematical modelling of gas-turbine combustion chamber. AGARD-CP-275. Paper 4.

    Google Scholar 

  • W.P. Jones and J.J. McGuirk (1981). A comparison of two droplet models for gas turbine combustion chamber flows. Proc. 5th ISABE, Bangalore, India. Paper 49.

    Google Scholar 

  • W.P. Jones and P. Musonge (1983). Modelling of scalar transport in homogeneous turbulent flows. 4th Symposium of Turbulent Shear Flows, pp. 17.18–17.24. Karlsruhe, Sept.-1983.

    Google Scholar 

  • W.P. Jones and C.H. Priddin (1979). Prediction of the flow field and local gas combustion in gas turbine combustors. 17th Symposium (Intl.) on Combustion, pp. 399–409.

    Google Scholar 

  • W.P. Jones and H. Toral (1983). Temperature and composition measurements in a research gas turbine combustor. Comb. Sci. and Tech., 31f pp. 249–275.

    Article  Google Scholar 

  • W.P. Jones and J.H. Whitelaw (1984). Modelling and measurements in turbulent combustion. 20th Symposium (Intl.) on Combustion. The Combustion Institute. Invited Paper.

    Google Scholar 

  • F. Joos and B. Simon (1987). Comparison of the performance of a reverse flow annular combustion chamber under low and high pressure conditions. AGARD-CPP 422, paper 13.

    Google Scholar 

  • M. Katsuky, Y. Mizutani and K. Shibuya (1976). Emissions from gas turbine combustors. Bull. JSME, 19, pp. 1353–1359.

    Google Scholar 

  • J.B. Kennedy (1974). Ramburner flow visualisation studies. Proc. 11th JANNAF Combustion meeting, II, Publ. 261 — Chemical Propulsion Inf. Agency, pp. 415–440.

    Google Scholar 

  • Z.A. Khan, J.J. McGuirk and J.H, Whitelaw (1981). A row of jets in a cross flow. AGARD-CP-308, Paper 10.

    Google Scholar 

  • Z.A. Khan and J.H. Whitelaw (1980a). Mean velocity and concentration characteristics of rows of jets in a cross flow. J. Heat Transfer, 102, pp. 391–392.

    Article  Google Scholar 

  • Z.A. Khan and J.H. Whitelaw (1980b). Vector and scalar characteristics of opposing jets discharging normally into a cross-stream. Int. J. Heat Mass Transfer, 23, pp. 1673–1680.

    Article  Google Scholar 

  • K. Komiyama, R.C. Flagan and J.B. Heywood (1977). The influence of droplet evaporation on fuel-air mixing rate in a burner. 16th Symposium (Intl.) on Combustion, pp. 549–560.

    Google Scholar 

  • P. Koutmos and J.J. McGuirk (1985). Investigation of swir1er-dilution jet flow split on primary zone flow patterns in a water model can-type combustor. ASME paper 85-GT-180.

    Google Scholar 

  • D. Kretschner and J. Odgers (1987). The characterization of combustor by fuel composition-measurements in a small conventional combustor. AGARD-CPP-422, paper 10.

    Google Scholar 

  • J.C. LaRue, C.S. Samuelsen and E.T. Seiler (1984). Momentum and heat-flux in a swirl-stabilised combustor. 20th Symposium (Intl.) on Combustion. The Combustion Institute.

    Google Scholar 

  • A.M. Lefebvre and R.S. Fletcher (1973). A preliminary study on the influence of fuel staging on nitric oxide emissions from gas turbine combustors. AGARD: CP-125, paper 30.

    Google Scholar 

  • A.H. Lefebvre (1983). Gas turbine combustion. McGraw-Hill, Series in energy, combustion and environment.

    Google Scholar 

  • S. Leibovich (1983). Vortex stability and breakdown. AGARD CP-342, paper 23.

    Google Scholar 

  • S. Leibovich (1984). Vortex stability and breakdown: survey and extension. AIAA J., 23, pp. 1192–1206.

    Article  ADS  Google Scholar 

  • M.H. Lewis and L.D. Smoot (1981). Turbulent gaseous combustion. Part I: local species concentrations measurements. Comb, and Flame, 42, pp. 183–196.

    Article  Google Scholar 

  • P.A. Libby, S. Sivasegaram and J.H. Whitelaw (1986). Premixed combustion. Prog. Energy Combust. Sci., 12, pp.393–405.

    Article  Google Scholar 

  • A.J. Lighiman, R.D. Richmond, L. Krishamurthy, P.D. Magill, W.M. Roquemore, R.P. Bradley, J.S. Stutrud and C.M. Reeves (1980). Velocity measurements in a bluff-body diffusion flame. Paper AIAA-80–1544: AIAA — 15th Thermophysics Conference, July 14–16, 1980 — Snowmass, Colorado.

    Google Scholar 

  • F.C. Lockwood, J.J. McGuirk and N.G. Shah (1983). Radiation transfer in gas turbine combustors. AIAA Paper 83–1506.

    Google Scholar 

  • H.C. Low (1983). Recent research on the efflux of the ROLLS-ROYCE vaporiser fuel injector. AGARD-CP-353: paper 11.

    Google Scholar 

  • J.J. Moguirk and J.H. Whitelaw (1983). Internal flows of relevance to gas-turbines. Imperial College, Mech. Eng. Dept. Report FS/83/25.

    Google Scholar 

  • P.D. Magill, A.J. Lightman, C.E. Orr, R.P. Bradley and W.M. Roquemore (1982). Simultaneous velocity and emission measurement in a bluff-body combustor. AIAA Paper 82–0883.

    Google Scholar 

  • A.M. Mellor (1976). Gas turbine engine pollution. Prog. Energy Combust. Sci., 1, pp. 111–133.

    Article  Google Scholar 

  • A.M. Mellor (1980). Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilization. Proc. Energy Combust. Sci., 6, pp. 347–358.

    Article  Google Scholar 

  • A.M. Mellor, R.D. Anderson, R.A. Altenkirch and J.H. Tuptle (1972). Emissions from and within an Allisons J-33 combustor. Comb. Sci. and Tech., 6, pp. 169–176.

    Article  Google Scholar 

  • A.R. Morr, J.B. Heywood and A.H. Fitch (1975). Measurements and predictions of carbon monoxide emissions from an industrial gas turbine. Comb. Sci. and Tech., 11, pp. 97–109.

    Article  Google Scholar 

  • D.W. Naegeli, L.G. Dodge and C.A. Moses (1983). Effects of flame temperature and fuel composition on soot formation in gas turbine combustors. Comb. Sci. and Tech., 35, pp. 117–131.

    Article  Google Scholar 

  • S. Nakamura, O. Kawagughi and G.T. Sato (1983). A study on the combustion in the primary zone region of a gas turbine-type continuous combustion chamber. Gas Turbine Society of Japan. 1983 Tokyo Intl. Gas Turbine Congress: Paper 83-TOKYO-IGTC-30, pp. 229–236.

    Google Scholar 

  • D.A. Nealy (1980). Combustor cooling — Old problems and new approaches. In: Gas Turbine Combustor Design Problems, (ed. A.H. Lefebvre), pp. 151–185. Hemisphere Pub. Corp.

    Google Scholar 

  • J.A. Nicholls, C.W. Kaufman, D.G. Pelacio, D.R. Glass and J.F. Driscoll (1980). The effect of fuel sprays on emissions from a research gas turbine combustor. Comb. Sci. and Tech., 23, pp. 203–213.

    Article  Google Scholar 

  • J.R. Noyce and C.G.W. Sheppard (1982). The influence of equivalence ratio variation on pollutant formation in a gas-turbine type combustor. Comb. Sci. and Tech., 29, pp. 37–52.

    Article  Google Scholar 

  • J.R. Noyce, C.G.W. Sheppard and F.D. Yamba (1981). Measurements of mixing and species concentrations within a gas turbine type combustor. Comb. Sci. and Tech., 25, pp. 209–217.

    Article  Google Scholar 

  • Y. Onuma and M. Ogasawara (1975). Studies on the structure of a spray combustion flame. 15th Symposium (Intl.) on Combustion, The Combustion Institute, pp. 453–465.

    Google Scholar 

  • Y. Onuma, M. Ogasawara and T. Inove (1977). Further experiments on the structure of a spray combustion flame. 16th Symposium (Intl.) on Combustion, The Combustion Institute, pp. 561–567.

    Google Scholar 

  • M.J. Oven, F.C. Gouldin and W.J. McLean (1979). Temperature and species concentration measurements in a swirl-stabilised combustor. 17th Symposium (Intl.) on Combustion, The Combustion Institute, pp. 363–374.

    Google Scholar 

  • F.K. Cwen (1977). Measurements of instantaneous velocity and concentration in complex mixing flows. AIAA Progress in Astronautics and Aeronautics, Vol. 53, (ed. B.T. Zinn et al), pp. 293–303.

    Google Scholar 

  • F.K. Cwen (1978). Measurements in combustion systems. Proc. 3rd Intl. Workshop on Laser Velocimetry, pp. 123–135, Purdue Univ., 1978.

    Google Scholar 

  • F.K. Owen, L.J. Spadaccini, J.B. Kennedy and C.T. Bowman (1979). Effects of inlet air swirl and fuel volatility on the structure of confined spray flames. 17th Symposium (Intl.) on Combustion, The Combustion Institute, pp. 467–473.

    Google Scholar 

  • F.K. Owen, L.J. Spadaccini and C.T. Bowman (1977). Pollutant formation and energy release in confined turbulent diffusion flames. 16th Symposium (Intl.) on Combustion. The Combustion Institute, pp. 105–117.

    Google Scholar 

  • P.G. Parikh, R.F. Sawyer and A.L. London (1971). Pollutants from methane fueled gas turbine combustion. Univ. California-Berkeley. Rep. No. TS-70–15, Jan. 1971.

    Google Scholar 

  • N. Peters (1984). Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci., 10, pp. 319–339.

    Article  Google Scholar 

  • S.L. Plee and A.M. Mellor (1978). Review of flashback reported in prevaporising/premixing combustors. Comb, and Flame, 32, pp. 193–203.

    Article  Google Scholar 

  • D.S. Prior, J. Swithenbank and P.G. Felton (1978). Stirred reactor modelling of a low pollution liquid fuelled combustor. In Progress in Astronautics and Aeronautics, 58, Ed. L.A. Kennedy, pp. 351–372.

    Google Scholar 

  • C.L. Proctor and A.M. Mellor (1982). Numerical and experimental examination of a prevaporised-premixed combustor. Paper AIAA-82–1074. 18th Joint Propulsion Conference: AIAA SAE ASME June 21–23, 1982, Cleveland, Ohio.

    Google Scholar 

  • D.L. Rhode, D.L. Lilley and D.K. McLaughlin (1983). Near flow fields in axisymmetric combustor geometries with swirl. AIAA J., 21, pp. 593–600.

    Article  ADS  Google Scholar 

  • N.K. Rizk, R.S. Fletcher and R.C. Adkins (1981). The application of fluidics to control emission from gas turbine combustors. Proc. ASME Fluids Eng. Conference, pp. 233–239, Colorado, 1981.

    Google Scholar 

  • N.K. Rizk and A.H. Lefebvre (1982). Air blast atomization studies on drop size atomization. J. Energy, 6, pp. 323–327.

    Article  Google Scholar 

  • W.M. Roquemore, R.P. Bradley, J.S. Stutrud, C.M. Reeves, C.A. Obringer and M.L. Britton (1983). Utilisation of laser diagnostics to evaluate combustion models. AGARD: CP-353, paper 36.

    Google Scholar 

  • C.S. Samuelsen, C.P. Wood and T.A. Jackson (1983). Optical measurements of soot size and number density in a complex flow, swirl-stabilised combustor. AGARD-CP-353, paper 21.

    Google Scholar 

  • R.F. Sawyer, N.P. Cernansky and A.K. Oppenheim (1973). Factors controlling pollutant emissions from gas turbine engines. AGARD: CP-125, paper 22

    Google Scholar 

  • R.F. Sawyer, D.P. Teixeira and E.S. Starkman (1969). Air pollution characteristics of gas turbine engines. Trans. ASME A: J. Eng. Power, 91, pp. 290–296.

    Google Scholar 

  • M.A. Serag-Eldin and D.B. Spalding (1978). Computations of three-dimensional gas turbine combustion chamber flows. ASME 23rd Intl. Gas Turbine Conference, London.

    Google Scholar 

  • C.G.W. Sheppard (1975). A simple model for carbon monoxide oxidation in gas turbine combustors. Comb. Sci. and Tech. 11, pp. 49–56.

    Article  Google Scholar 

  • R.A. Shisler, J.H. Tuttle and A.M. Mellor (1975). Emissions from and within a film-cooled combustor. Comb. Sci. and Tech., 11, pp. 153–160.

    Article  Google Scholar 

  • S. Sivasegaram and J.H. Whitelaw (1984). Flow characteristics of opposing rows of jets in a confined space. Fluids Section Report FS/84/26, Mech. Eng. Dept., Imperial College, London.

    Google Scholar 

  • B. Simon, D. Schubert and V. Basler (1983). Advanced combustor liner cooling concept. AGARD-CP-353, paper 24.

    Google Scholar 

  • P.J. Smith and L.D. Smoot (1981). Turbulent gaseous combustion part II: theory and evaluation for local properties. Comb, and Flame, 42, pp. 277–285.

    Article  Google Scholar 

  • L.J. Spadacini, J.B. McVey, J.B. Kennedy, F.K. Cwen and C.T. Bowman (1977). Pollutant formation and energy release in liquid-fuel turbulent diffusion flames. AIAA paper 77–53, AIAA 15th Aerospace Sciences Meeting, Los Angeles, Calif-Jan. 25–26, 1977.

    Google Scholar 

  • E.S. Starkman, Y. Mizutani, R.F. Sawyer and D.P. Teixeira (1971). The role of chemistry in gas turbine emissions. Trans. ASME, Ser. A, 93, pp. 333–344.

    Google Scholar 

  • K. Suzuki, A. Ishii, S. Horiuchi, T. Saito, M. Matsuki and T. Torisaki (1978). Design and development of a high-pressure combustor for aero-gas-turbines. Trans. ASME: J. Eng. Power, 100, pp. 129–235.

    Article  Google Scholar 

  • J. Swithenbank, A. Turan and P.C. Felton (1978). Three-dimensional two-phase mathematical modelling of gas turbine combustors. In: Gas Turbine Combustor Pesign Problems. (ed. A.H. Lefebvre), pp. 249–314. Hemisphere Pub. Corp., 1980.

    Google Scholar 

  • T. Tamaru and Y. Kurosawa (1984). Evaluation of thermocouple and thermal radiation instrumentation for measuring gas turbine combustor liner wall temperature. Bull. JSME, 27, pp. 2470–2475.

    Google Scholar 

  • J.H. Tilston and J.F.B. Hakluytt (1983). The design and performance of a combustor with a multiple jet primary zone. AGARD-CP-353, paper 17.

    Google Scholar 

  • H. Toral and J.H. Whitelaw (1982). Velocity and scalar characteristics of the isothermal and combusting flows in a combustor sector rig. Comb, and Flame, 45, pp. 251–272.

    Article  Google Scholar 

  • J.H. Tuttle, R.A. Altenkirch and A.M. Mellor (1973). Emissions from and within an Allison J-33 combustor - II: The effect on inlet temperature. Comb. Sci. and Tech., 7, pp. 125–134.

    Article  Google Scholar 

  • J.H. Tuttle, R.A.Shisler and A.M. Mellor (1976). Investigation of liquid fueled turbulent diffusion flames. Comb. Sci. and Tech., 14, pp. 229–241.

    Article  Google Scholar 

  • A. Vranos and E.F. Taback (1976). Combustion product distributions in the primary zone of a gas turbine combustor. Comb, and Flame, 46, pp. 129–131.

    Article  Google Scholar 

  • B.T. Vu and F.C. Gouldin (1982). Flow measurements in a model swirl combustor. AIAA J., 20, pp. 642–651.

    Article  ADS  Google Scholar 

  • A.B. Wassel and J.K. Bhangu (1980). The development and application of improved combustion wall cooling techniques. ASME 80-CT-66, March, 1980.

    Google Scholar 

  • D.R. Weske and G.Y. Sturov (1974). Experimental study of turbulent swirled flows in a cylindrical tube. Fluid Mech.-Sov. Res., 3, pp. 77–82.

    Google Scholar 

  • P.N. Wild, F. Boysan, J. Swithenbank and X. Lu (1987). 3-D dimensional gas turbine combustor modelling. AGARD-CPP-422, paper 27.

    Google Scholar 

  • J. Wilheimi (1984). Axisymmetric swirl stabilised combustion. Ph.D. Thesis, University of London.

    Google Scholar 

  • S. Wittig, O.M.F. Elbahar and B.E. Noll (1984). Temperature profile development in turbulent mixing of coolant jets with a confined hot crossflow. J. Engng. for Gas Turbines and Power, 106, 193.

    Article  Google Scholar 

  • S. Wittig, H.J. Bauer and B. Noll (1987). On the application of finite-difference techniques for the computation of the flow field in gas turbine combustors with complex geometries. AGARD-CPP-422, paper 28.

    Google Scholar 

  • C.P. Wood, R.A. Smith and C.S. Samuelsen (1984). Spatially-resolved measurements of soot size and population in a swirl-stabilised combustor. Presented at the 20th Symposium (Intl.) on Combustion.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Heitor, M.V. (1989). Velocity and Scalar Measurements in Model and Real Gas Torbine Combustors. In: Durão, D.F.G., Whitelaw, J.H., Witze, P.O. (eds) Instrumentation for Combustion and Flow in Engines. NATO ASI Series, vol 154. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2241-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2241-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7503-9

  • Online ISBN: 978-94-009-2241-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics