Skip to main content

Principles and Approaches in Modeling Steady-State Gas Diffusion in Legume Nodules

  • Chapter
Applications of Continuous and Steady-State Methods to Root Biology

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 34))

  • 92 Accesses

Abstract

Mathematical modeling of biological systems is a powerful technique by which data from empirical measurements can be both corroborated and used to gain a fuller understanding of the system under study. Most empirical studies involve the measurement of individual parts of a complex system while mathematical modeling allows these parts to be brought together as a unified whole. The predictions of a model and the degree to which these predictions are consistent with measurable parameters can be valuable in assessing both the data and the assumptions used in the model construction. Also, the modeling process challenges the modeller to define precisely and then assess critically all of the assumptions and empirical data which are used in developing hypotheses and designing experiments. In this way models are useful in examining the feasibility and the implications of hypotheses which have been created to account for empirical data. Finally, the predictions of a model may elucidate new aspects of a problem and lead to the design of experiments which improve our understanding of complex biological systems.

To whom correspondence should be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkins PW 1978 Physical Chemistry. W.H. Freeman and Co., San Francisco.

    Google Scholar 

  • Bergersen FJ 1982 Root nodules of legumes. Structure and functions. Research Studies Press, Toronto.

    Google Scholar 

  • Bird RB, WE Stewart, EN Lightfoot 1960 Transport Phenomena. John Wiley and Sons, New York.

    Google Scholar 

  • Denison RF, PR Weisz, TR Sinclair 1983 Analysis of acetylene reduction rates of soybean nodules at low acetylene concentrations. Plant Physiol 73: 648–651.

    Article  PubMed  CAS  Google Scholar 

  • Denison RF, PR Weisz, TR Sinclair 1985 Variability among plants in dinitrogen fixation (acetylene reduction) rates by field-grown soybean. Agron J 77: 947–950.

    Article  Google Scholar 

  • Dixon ROD, EAG Blunden, JW Searl 1981 Intercellular space and hydrogen diffusion in pea and lupin root nodules. Plant Science Letters 23: 109–116.

    Article  CAS  Google Scholar 

  • Durand J-L, JE Sheehy, FR Minchin 1987 Nitrogenase activity, photosynthesis and nodule water potential in soyabean plants experiencing water deprivation. J Exp Bot 38: 311–321.

    Article  CAS  Google Scholar 

  • Hartwig U, B Boller, J Nosberger 1987 Oxygen supply limits nitrogenase activity of clover nodules after defoliation. Ann Bot 59: 285–291.

    CAS  Google Scholar 

  • Helder RJ 1985 Diffusion of inorganic carbon across unstirred layers: a simple quantitative approach. Plant Cell Env 8: 399–408.

    Article  CAS  Google Scholar 

  • Hunt S, ST Gaito, DB Layzell 1988 Model of gas exchange and diffusion in legume nodules. II Characterization of the diffusion barrier and estimation of the concentrations of CO2, H2 and N2 in the infected cells. Planta 173:128–141.

    Article  CAS  Google Scholar 

  • Hunt S, BJ King, DT Canvin, DB Layzell 1987 Steady and nonsteady state gas exchange characteristics of soybean nodules in relation to the oxygen diffusion barrier. Plant Physiol 84: 164–172.

    Article  PubMed  CAS  Google Scholar 

  • Jones GT, LC Davis, AK Ghosh Hajra, LE Erickson 1987 Modeling and analysis of diffusion and reaction in legume nodules. Biotechnol and Bioengineering 29: 279–288.

    Article  CAS  Google Scholar 

  • Jost W 1960 Diffusion in Solids, Liquids, Gases. Academic Press New York.

    Google Scholar 

  • King BJ, S Hunt, GE Weagle, KB Walsh, RH Pottier, DT Canvin, DB Layzell 1988 Regulation of O2 concentration in soybean nodules observed by in situ spectroscopic measurement of leghemoglobin oxygenation. Plant Physiol 87: 296–299.

    Article  PubMed  CAS  Google Scholar 

  • Layzell DB, ST Gaito, S Hunt 1988 Model of gas exchange and diffusion in legume nodules. I. Calculation of gas exchange rates and the energy cost of N2 fixation. Planta 173: 117–127.

    Article  CAS  Google Scholar 

  • Minchin FR, MI Minguez, JE Sheehy, JF Witty, L Skot 1986 Relationships between nitrate and O2 supply in symbiotic nitrogen fixation by white clover. J Exp Bot 37:1103–1113.

    Article  CAS  Google Scholar 

  • Minchin FR, JE Sheehy, MI Minguez, JF Witty 1985 Characterization of the resistance to O2 diffusion in legume nodules. Ann Bot 55: 53–60.

    Google Scholar 

  • Minchin FR, JF Witty, JE Sheehy, M Muller 1983 A major error in the acetylene reduction assay: decreases in nodular nitrogenase activity under assay conditions. J Exp Bot 34: 641–649.

    Article  CAS  Google Scholar 

  • Murray JD 1971 On the molecular mechanism of facilitated oxygen diffusion by haemoglobin and myoglobin. Proc Roy Soc Lond B 178: 95–110.

    Article  CAS  Google Scholar 

  • van Noordwijk, M, P de Willigen 1984 Mathematical models on diffusion of oxygen to and within plant roots, with special emphasis on effects of soil-root contact. II Applications. Plant and Soil 77: 233–241.

    Article  Google Scholar 

  • Ralston EJ, J Ismande 1982 Entry of oxygen and nitrogen into intact soybean nodules. J Exp Bot 33: 208–214.

    Article  CAS  Google Scholar 

  • Sheehy JE, FJ Bergersen, FR Minchin, JF Witty 1987 A simulation study of gaseous diffusion resistance, nodule pressure gradients and biological nitrogen fixation in soyabean nodules. Ann Bot. 60: 345–351.

    CAS  Google Scholar 

  • Sheehy JE, FR Minchin, JF Witty 1983 Biological control of the resistance to oxygen flux in nodules. Ann Bot 52: 565–71.

    Google Scholar 

  • Sheehy JE, FR Minchin, JF Witty 1985 Control of nitrogen fixation in a legume nodule: an analysis of the role of oxygen diffusion in relation to nodule structure Ann Bot 52: 565–71.

    Google Scholar 

  • Sinclair TR, J Goudriaan 1981 Physical and morphological constraints on transport in nodules. Plant Physiol 61: 143–145.

    Article  Google Scholar 

  • Tucker ML, GG Laties 1985 The dual role of oxygen in avocado fruit respiration: Kinetic analysis and computer modelling of diffusion-affected respiration oxygen isotherms. Plant Cell Env 8: 117–127.

    Article  Google Scholar 

  • Umbreit WW, RH Burris, JF Stauffer 1957 Manometric Techniques, pp 18–27. Burgess Publishing Co. Minn. U.S.A.

    Google Scholar 

  • Vessey JK, KB Walsh, DB Layzell 1988a Oxygen limitation of N2 fixation in stem girdled and nitrate treated soybean. Physiol Plant 73:113–121.

    Article  CAS  Google Scholar 

  • Vessey JK, KB Walsh, DB Layzell 1988b Can a limitation in phloem supply to nodules account for the inhibitory effect of nitrate on nitrogenase activity in soybean? Physiol Plant 74: 137–146.

    Article  CAS  Google Scholar 

  • Walsh KB, DB Layzell 1986 Carbon and nitrogen assimilation and partitioning in soybeans exposed to low root temperatures. Plant Physiol 80: 249–255.

    Article  PubMed  CAS  Google Scholar 

  • Walsh KB, JK Vessey, DB Layzell 1987 Carbohydrate supply and N2 fixation in soybean. The effect of varied daylength and stem girdling. Plant Physiol 85: 137–144.

    Article  PubMed  CAS  Google Scholar 

  • Weisz PR, TR Sinclair 1987a Regulation of soybean nitrogen fixation in response to rhizosphere oxygen. 1. Role of nodule respiration. Plant Physiol 84: 900–905.

    Article  PubMed  CAS  Google Scholar 

  • Weisz PR, TR Sinclair 1987b Regulation of soybean nitrogen fixation in response to rhizosphere oxygen. II. Quantification of nodule gas permeability. Plant Physiol 84: 906–910.

    Article  PubMed  CAS  Google Scholar 

  • White DCS 1974 Biological Physics. Chapman and Hall, London.

    Google Scholar 

  • de Willigen, P, M Van Noordwijk 1984 Mathematical models on diffusion of oxygen to and within plant roots, with special emphasis on effects of soil-root contact. I Derivation of the models. Plant and Soil 77: 215–231.

    Article  Google Scholar 

  • Witty JF, FR Minchin, JE Sheehy, MI Minquez 1984 Acetylene-induced changes in the oxygen diffusion resistance and nitrogenase of legume root nodules. Ann Bot 53:13–20.

    CAS  Google Scholar 

  • Witty JF, FR Minchin, L Skøt, JE Sheehy 1986 Nitrogen fixation and O2 in legume root nodules. Oxford surveys of Plant Molecular and Cell Biology 3: 276–314.

    Google Scholar 

  • Witty JF, L Skøt, NP Revsbech 1987 Direct evidence for changes in the resistance of legume root nodules to O2 diffusion. J Exp Bot 38: 1129–1140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Dordrecht

About this chapter

Cite this chapter

Gaito, S.T., Hunt, S., Layzell, D.B. (1989). Principles and Approaches in Modeling Steady-State Gas Diffusion in Legume Nodules. In: Torrey, J.G., Winship, L.J. (eds) Applications of Continuous and Steady-State Methods to Root Biology. Developments in Plant and Soil Sciences, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2237-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2237-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7502-2

  • Online ISBN: 978-94-009-2237-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics