Skip to main content

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 34))

Abstract

Ectomycorrhizae (ECM) are a symbiosis between tree roots and fungi which may enhance the nutrient and water uptake of trees, protect roots from pathogens (Harley and Smith 1983) and have been implicated in interplant carbon and nutrient transfers (Read et al 1985). Since the carbon source for the fungal symbiont comes primarily from the plant, ECM can profoundly affect the carbon physiology of trees. Quantification of this flow to the fungus and its affect on the overall physiology of the host is essential to understanding the ecological importance of the symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbot LK, AD Robson 1977 Growth stimulation of subterranean clover with vesicular-arbuscular mycorrhizas. Aust J Agr Res 28: 639–649.

    Article  Google Scholar 

  • Alexander IJ, P Hogberg 1986 Ectomycorrhizas of tropical angiospermous trees. New Phytol 102:541–549.

    Article  Google Scholar 

  • Bevege DI, GD Bowen, MF Skinner 1975 Comparative carbohydrate physiology of ecto- and endomycorrhizas. In Sanders FE, B Mosse, PB Tinker (eds), Endomycorrhizas, pp. 149–174. Academic Press, New York.

    Google Scholar 

  • Cannel MGR 1984 Dry matter partitioning in tree crops, In Bowen GD, EKS Nambiar (eds), Nutrition of Forest Trees in Plantations, pp. 160–193. Academic Press, New York.

    Google Scholar 

  • Clowes FAL 1981 Cell proliferation in ectotrophic mycorrhizas. New Phytol 87: 547–555.

    Article  Google Scholar 

  • Domsch KH, T Beck, JPE Anderson, BD Söderström, D Parkinson, G Trolldenier 1979 A comparison of methods for soil microbial populations and biomass studies. Z Planz Bodenk 142: 520–533.

    Article  CAS  Google Scholar 

  • Fogel R, G Hunt 1979 Fungal and arboreal biomass in a western Oregon Douglas-fir ecosystem: distribution patterns and turnover. Can J For Res 9: 245–256.

    Article  Google Scholar 

  • France RC, CPP Reid 1983 Interactions of nitrogen and carbon in the physiology of ectomycorrhizae. Can J Bot 61: 964–984.

    Article  CAS  Google Scholar 

  • Gibson AH 1966 The carbohydrate requirement for symbiotic nitrogen fixation. A ‘whole-plant’ growth analysis approach. Aust J Biol Sci 19:499–515.

    CAS  Google Scholar 

  • Gordon JC, PR Larson 1968 Seasonal course of photosynthesis, respiration, and distribution of 14C in young Pinus resinosa trees as related to wood formation. Plant Physiol 43: 1617–1623.

    Article  PubMed  CAS  Google Scholar 

  • Harley JL 1969 The Biology of Mycorrhizas. 2nd edition. Leonard Hill, London.

    Google Scholar 

  • Harley JL, CC Mc Cready 1952 Uptake of phosphate by excised mycorrhizas. II. Distribution of phosphate between host and fungus. New Phytol 51: 56–64.

    Article  CAS  Google Scholar 

  • Harley JL, CC Mc Cready, JK Brierley, DH Jennings 1956 The salt respiration of excised beech mycorrhizas II. New Phytol 55:1–28.

    Article  CAS  Google Scholar 

  • Harley JL, SE Smith 1983 Mycorrhizal Symbiosis. Academic Press, New York.

    Google Scholar 

  • Hepper CM 1977 A colorimetric method for estimating vesicular-arbuscular mycorrhizal infection in roots. Soil Biol Biochem 9: 15.

    Article  Google Scholar 

  • Ingestad T, AS Arveby, M Kähr 1986 The influence of ectomycorrhiza on nitrogen nutrition and growth of Pinus sylvestris seedlings. Physiol Plant 62: 117–124.

    Google Scholar 

  • Ingestad T, AB Lund 1979 Nitrogen stress in birch seedlings I. Growth technique and growth. Physiol Plant 45: 137–148.

    Article  CAS  Google Scholar 

  • Kähr M, AS Arveby 1986 A method of establishing ectomycorrhiza on conifer seedlings in steady state conditions of nutrition. Physiol Plant 67: 333–339.

    Article  Google Scholar 

  • Koch K, CR Johnson 1984 Photosynthate partitioning in split-root citrus seedlings with mycorrhizal and nonmycorrhizal root systems. Plant Physiol 75: 26–30.

    Article  PubMed  CAS  Google Scholar 

  • Kucey RM, EA Paul 1982 Carbon flow, photosynthesis, and N fixation in mycorrhizal and nodulated Faba beans (Vicia faba L.) Soil Biol Biochem 14: 407–412.

    Article  Google Scholar 

  • Ledig FT 1983 The influence of genotype and environment on dry matter distribution in plants. In Huxley PA (ed), Plant Research and Agroforestry, pp. 426–453. Nairobi, International Council for Research in Agroforestry.

    Google Scholar 

  • Linder S, DA Rook 1984 Effects of mineral nutrition on the carbon dioxide exchange of trees. In Bowen GD, EKS Nambiar (eds), Nutrition of Forest Trees in Plantations, pp. 211–236. Academic Press, New York.

    Google Scholar 

  • Lister GP, V Slankis, G Krotkov, CD Bowen 1968 The growth and physiology of Pinus strobus L. seedlings as affected by various nutritional levels of nitrogen and phosphorus. Ann Bot (N.S.) 32: 33–43.

    CAS  Google Scholar 

  • Marx DH, CE Cordeil, DS Kenney, JG Mexal, JD Artman, JW Riffle, RJ Molina 1984 Commercial vegetative inoculum techniques for development of ectomycorrhizae on bare-root tree seedlings. Forest Science Monograph 25, vol. 30 suppl. 1–101.

    Google Scholar 

  • Marx DH, AB Hatch, JF Mendicino 1977 High soil fertility decreases sucrose content and susceptibility of loblolly pine roots to ectomycorrhizal infection by Pisolithus tinctorius. Can J Bot 55: 1569–1154.

    Article  CAS  Google Scholar 

  • Melin E, H Nilsson 1957 Transport of 14-C-labeled photosynthate to the fungal associate of pine mycorrhiza. Sven Bot Tidskr 51:166–186.

    CAS  Google Scholar 

  • Nelson CD 1964 The production and translocation of photosynthate-C-14 in conifers. In Zimmermann MH (ed), The Formation of Wood in Forest Trees, pp. 89–96. Academic Press, New York.

    Google Scholar 

  • Nylund JE, T Unestam 1982 Structure and physiology of ectomycorrhizae I. The process of mycorrhiza formation in Norway spruce in vitro. New Phytol 91: 63–69.

    Article  Google Scholar 

  • Nylund JE, T Unestam 1987 Ectomycorrhiza in semi-hydroponic Scots pine: Increased photosynthesis but reduced growth!, In Sylvia DM, JH Graham, LL Hung (eds), Mycorrhiza in the Next Decade: Practical Applications and Research Priorities. 7th North American Conference on Mycorrhiza, Gainesville, Fl. IFAS, Univ. of Florida.

    Google Scholar 

  • Pacovsky RE, GJ Bethlenfalvay 1982 Measurement of the extraradical mycelium of a vesicular-arbuscular mycorrhizal fungi in soil by chitin determination. Plant and Soil 68: 143–147.

    Article  Google Scholar 

  • Plassard CD, DG Moussain, LE Salsac 1982 Estimation of mycelial growth of basidiomycetes by means of chitin determination. Phytochemistry 21: 345–348.

    Article  CAS  Google Scholar 

  • Read DJ, R Francis, RD Finlay 1985 Mycorrhizal mycelia and nutrient cycling in plant communities. In Fitter AH (ed), Ecological Interactions in Soil. pp. 193–217. Blackwell Scientific Publ., Oxford.

    Google Scholar 

  • Reid CPP, FA Kidd, SA Ekwebelam 1983 Nitrogen nutrition, photosynthesis and carbon allocation in ectomycorrhizal pine. Plant and Soil 79: 415–432.

    Article  Google Scholar 

  • Rousseau JVD 1986 Interaction of nutrients and mycorrhizae on growth and dry matter partitioning in pine. Ph.D. Thesis. Colo. St. Univ.

    Google Scholar 

  • St John TV, DC Coleman, CPP Reid 1983 Association of vesicular-arbuscular mycorrhizal hyphae with soil organic particles. Ecology 64: 957–959.

    Article  Google Scholar 

  • Sands R, C Theodorou 1978 Water uptake of mycorrhizal roots of radiata pine seedlings. Aust J Pl Phys 5: 301–309.

    Article  Google Scholar 

  • Schweers W, FH Meyer 1970 Einfluss der Mykorrhiza auf den Transport von Assimilaten in die Wurzel. Ber Dtsch Bot Ges 83: 109–119.

    Google Scholar 

  • Shiroya T, V Slankis, G Krotkov, CD Nelson 1962 Translocation of the products of photosynthesis to roots of pine seedlings. Can J Bot 40: 1125–1135.

    Article  Google Scholar 

  • Snellgrove RC, WE Splitstoesser, DP Stribley, PB Tinker 1982 The carbon distribution and the demand of the fungal symbiont in leek plants with vesicular-arbuscular mycorrhizas. New Phytol 92: 75–81.

    Article  Google Scholar 

  • Söderström BE 1977 Vital staining of fungi in pure cultures and in soil with fluorescein diacetate. Soil Biol Biochem 11: 59–63.

    Article  Google Scholar 

  • Söderström BE 1979a Some problems in assessing the fluorescein diacetate active fungal biomass in the soil. Soil Biol Biochem 11: 147–148.

    Article  Google Scholar 

  • Söderström BE 1979b Seasonal fluctuation of active fungal biomass in horizons of a podzolized pine-forest soil in central Sweden. Soil Biol Biochem 11: 149–154.

    Article  Google Scholar 

  • Söderström BE, DJ Read 1987 Respiratory activity of intact and excised ectomycorrhizal mycelial systems growing in unsterilized soil. Soil Biol Biochem 19: 231–236.

    Article  Google Scholar 

  • Stribley DP, PB Tinker, JH Rayner 1980 Relation of internal phosphorus concentration and plant weight in plants infected by vesicular-arbuscular mycorrhizas. New Phytol 86: 261–266.

    Article  CAS  Google Scholar 

  • Sylvia DM 1986 Spatial and temporal distribution of vesicular-arbuscular mycorrhizal fungi associated with Unicola paniculata in Florida foredunes. Mycologia 78: 728—734.

    Google Scholar 

  • Thornley JHM 1972 A balanced quantitative model for root:shoot ratios in vegetative plants. Ann Bot 36:431–441.

    Google Scholar 

  • Thornley JHM 1976 Mathematical Models in Plant Physiology. Academic Press, New York.

    Google Scholar 

  • Vogt KA, CC Grier, CE Meir, RL Edmonds 1982 Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in western Washington. Ecology 63: 370–380.

    Article  Google Scholar 

  • Wedding RT, JL Harley 1976 Fungal polyol metabolites in the control of carbohydrate metabolism of mycorrhizal roots of beech. New Phytol 77: 675–688.

    Article  CAS  Google Scholar 

  • Ziemer RR 1971 Translocation of 14C inponderosa pine seedlings. Can J Bot 49: 167–171.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Dordrecht

About this chapter

Cite this chapter

Rousseau, J.V.D., Reid, C.P.P. (1989). Measurement of Carbon Cost in Ectomycorrhizae. In: Torrey, J.G., Winship, L.J. (eds) Applications of Continuous and Steady-State Methods to Root Biology. Developments in Plant and Soil Sciences, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2237-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2237-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7502-2

  • Online ISBN: 978-94-009-2237-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics