Skip to main content

Abstract

In the last 10 years there has been an enormous expansion of research on the effect of peptides on the central nervous system. The field has advanced rapidly, which has led to the development of the concept of multiple peptide actions in the central nervous system, under both physiological and pathological conditions. A number of recent experimental and clinical studies have provided strong evidence that the function by which most peptides were originally discovered and characterized is not their usual action, and is often not their most important action. However, from these early studies we have inherited most of the current peptide nomenclature, which in many cases was based on the original proposed function of the peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zadina, J.E., Banks, W.A. and Kastin, J.E. (1986). Central nervous system effects of peptides 1980–1985. Peptides, 7, 497–537

    PubMed  CAS  Google Scholar 

  2. Schacter, M. (1981). Enkephalins and endorphins. Br. J. Hosp. Med., 25,128–136

    Google Scholar 

  3. Vilberg, T.R., Panksepp, J., Kastin, A.J. and Coy, D.H. (1984). The pharmacology of endorphin modulation of chick distress vocalization. Peptides, 5, 823–827

    PubMed  CAS  Google Scholar 

  4. Lipkowski, A.W., Konecka, A.M. and Sroczynska, I. (1982). Double-enkephalins-synthesis, activity on guinea-pig ileum, and analgesic effect. Peptides, 3, 697–700

    PubMed  CAS  Google Scholar 

  5. Honde, C. and Bueno, L. (1984). Evidence for central neuropeptidergic control of rumination in sheep. Peptides, 5, 81–83

    PubMed  CAS  Google Scholar 

  6. Kastin, A.J., Olson, R.D., Schally, A.V. and Coy, D.H. (1979). CNS effects of peripherally administered peptides. Life Sci., 25, 401–414

    PubMed  CAS  Google Scholar 

  7. Aloyo, V.J., Spruijt, B., Zwiers, H. and Gispen, W.H. (1983). Peptide-induced excessive grooming in the rat: The role of opiate receptors. Peptides, 4, 833–836

    PubMed  CAS  Google Scholar 

  8. Saint-Come, C., Acker, G.R. and Strand, F.L. (1982). Peptide influences on the development and regeneration of motor performance. Peptides, 3, 439–449

    PubMed  CAS  Google Scholar 

  9. Blair, R., Galina, Z.H., Sutherland, C. and Amit, Z. (1983). ACTH 1–39 but not naltrexone produces biphasic effects on locomotor activity. Peptides, 4,117–120

    PubMed  CAS  Google Scholar 

  10. Thornhill, J.A. and Saunders, W.S. (1984). Thermoregulatory (core, surface and metabolic) responses of unrestrained rats to repeated POAH injections of beta-endorphin or adrenocorticotropin. Peptides, 5, 713–719

    PubMed  CAS  Google Scholar 

  11. Appel, N.M. and Van Loon, G.R. (1983). Activation of angiotensin II receptors in brain potentiates the stimulating effect of endogenous opioid neurons on central sympathetic outflow. Peptides, 4, 59–62

    PubMed  CAS  Google Scholar 

  12. Miceli, M.O. and Malsbury, C.W. (1983). Feeding and drinking responses in the golden hamster following treatment with cholecystokinin and angiotensin II. Peptides, 4, 103–106

    PubMed  CAS  Google Scholar 

  13. Gross, P.M., Kadekaro, M., Andrews, D.W., Sokoloff, L. and Saavedra, J.M. (1985). Selective metabolic stimulation of the subfornical organ and pituitary neural lobe by peripheral angiotensin II. Peptides, 6 (Suppl. 1), 145–152

    PubMed  CAS  Google Scholar 

  14. Widerlov, E., Mueller, R.A., Frye, G.D. and Breese, G.R. (1984). Bombesin increases dopamine function in rat brain areas. Peptides, 5, 523–528

    PubMed  CAS  Google Scholar 

  15. Tache, Y., Vale, W., Rivier, J. and Brown, M. (1981). Brain regulation of gastric acid secretion in rats by neurogastrointestinal peptides. Peptides, 2 (Suppl. 2), 51–55

    PubMed  CAS  Google Scholar 

  16. Tartara, A., Bo, P. and Savoldi, F. (1982). Neuropeptides and cerebral electric activity in rabbits. Peptides, 3, 125–127

    PubMed  CAS  Google Scholar 

  17. DeCaro, G., Massi, M., Micossi, L.G. and Perfumi, M. (1984). Drinking and feeding inhibition by ICV pulse injection or infusion of bombesin, ranatensin and litorin to rats. Peptides, 5, 607–613

    CAS  Google Scholar 

  18. DeCaro, G., Massi, M., Micossi, L.G. and Perfumi, M. (1982). Angiotensin II antagonists versus drinking induced by bombesin or eledoisin in pigeons. Peptides, 3, 631–636

    CAS  Google Scholar 

  19. Gibbs, J., Kulkosky, P.J. and Smith, G.P. (1981). Effects of peripheral and central bombesin on feeding behavior of rats. Peptides, 2 (Suppl. 2), 179–183

    PubMed  CAS  Google Scholar 

  20. Kulkosky, P.J., Gray, L., Gibbs, J. and Smith, G.P. (1984). Feeding and selection of saccharin after injections of bombesin, LiCl and NaCl. Peptides, 2, 61–64

    Google Scholar 

  21. Tenner, T.E.J., Yang, C.M., Chang, J.K., Schimizu, M. and Pang, P.K.T. (1980). Pharmacological comparison of bPTH-(l-34) and other hypotensive peptides in the dog. Peptides, 1, 285–288

    PubMed  CAS  Google Scholar 

  22. Twery, M.J. and Moss, R.L. (1985). Calcitonin and calcitonin gene-related peptide alter the excitability of neurons in rat forebrain. Peptides, 6, 373–378

    PubMed  CAS  Google Scholar 

  23. Hughes, J.J., Levine, A.S., Morley, J.E., Gosnell, B.A. and Silvis, S.E. (1984). Intraventricular calcitonin gene-related peptide inhibits gastric acid secretion. Peptides, 5, 665–667

    PubMed  CAS  Google Scholar 

  24. Niewoehner, D.E., Levine, A.S. and Morley, J.E. (1983). Central effects of neuropeptides on ventilation in the rat. Peptides, 4, 277–281

    PubMed  CAS  Google Scholar 

  25. Giusti, P., Carrara, M., Zampiron, S., Cima, L. and Borin, G. (1985). Are calcitonins analgesic and/or hyperalgesic? Peptides, 6 (Suppl. 3), 277–282

    PubMed  CAS  Google Scholar 

  26. Candeletti, S., Romualdi, P., Spadaro, C., Spampinato, S. and Ferri, S. (1985). Studies on the antinociceptive effect of intrathecal salmon calcitonin. Peptides, 6 (Suppl. 3), 273–276

    PubMed  CAS  Google Scholar 

  27. Motta, M. (1985). Neuroendocrine effects of some amphibian peptides. Peptides, 6 (Suppl. 3), 131–135

    PubMed  CAS  Google Scholar 

  28. Hsiao, S. and Wang, C.H. (1983). Continuous infusion of cholecystokinin and meal pattern in the rat. Peptides, 4, 15–17

    PubMed  CAS  Google Scholar 

  29. Ruiz-Gayo, M., Duage, V., Menant, I., Begue, D., Gacel, G. and Rogues, B.P. (1985). Synthesis and biological activity of BOC[Nle 28, NLE 31]CCK 27–33, a highly potent CCK 8 analogue. Peptides, 6, 415–420

    PubMed  CAS  Google Scholar 

  30. Dumbrille-Ross, A. and Seeman, P. (1984). Dopamine receptor elevation by cholecystokinin. Peptides, 5, 1207–1212

    PubMed  CAS  Google Scholar 

  31. Katsuura, G., Itoh, S. and Hsiao, S. (1985). Specificity of nucleus accumbens to activities related to cholecystokinins in rats. Peptides, 6, 91–96

    PubMed  CAS  Google Scholar 

  32. Willis, G.L., Hansky, J. and Smith, G.C. (1984). The role of some central catecholamine systems in cholecystokinin-induced satiety. Peptides, 5, 41–46

    PubMed  CAS  Google Scholar 

  33. Itoh, S. and Katsuura, G. (1985). Fronto-cortical regulation of beta-endorphin actions in the rat. Peptides, 6, 237–240

    PubMed  CAS  Google Scholar 

  34. Cohen, S.L., Knight, M., Tamminga, C.A. and Chase, T.N. (1983). Tolerance to the antiavoidance properties of cholecystokinin-octapeptide. Peptides, 4, 67–70

    PubMed  CAS  Google Scholar 

  35. Zetler, G. (1982). Ceruletide, ceruletide analogues and cholecystokinin octapeptide (CCK-8): effects on motor behavior, hexobarbital-induced sleep and harman-induced convulsions. Peptides, 3, 701–704

    PubMed  CAS  Google Scholar 

  36. Stacher, G., Steinringer, H., Schmierer, G., Schneider, C. and Winklehner, S. (1982). Cholecystokinin octapeptide decreases intake of solid food in man. Peptides, 3, 133–136

    PubMed  CAS  Google Scholar 

  37. Smith, G.P., Kulkosky, J.P. and Simansky, K.J. (1984). Ceruletide acts in the abdomen, not in the brain, to produce satiety. Peptides, 5, 1149–1157

    PubMed  CAS  Google Scholar 

  38. Stacher, G., Steinringer, H., Schmierer, G., Winklehner, S. and Schneider, C (1982). Ceruletide increases threshold and tolerance to experimentally induced pain in healthy man. Peptides, 3, 955–962

    PubMed  CAS  Google Scholar 

  39. DeCastiglione, R. (1981). Structural requirements of ceruletide-like peptides for activity on gut and brain. Peptides, 2 (Suppl. 2), 61–63

    CAS  Google Scholar 

  40. Fargeas, M.J., Fioramonti, J. and Bueno, L. (1985). Calcitonin gene-related peptide: brain and spinal action on intestinal motility. Peptides, 6, 1167–1171

    PubMed  CAS  Google Scholar 

  41. Eberly, L.B., Dudley, A.A. and Moss, R.L. (1983). Iontophoretic mapping of corticotropin-releasing factor (CRF) sensitive neurons in the rat forebrain. Peptides, 4, 837–841

    PubMed  CAS  Google Scholar 

  42. Kalin, N.H., Shelton, S.E., Kraemer, G.W. and McKinney, W.T. (1983). Corticotropin-releasing factor administered intraventricularly to Rhesus monkeys. Peptides, 4, 217–220

    PubMed  CAS  Google Scholar 

  43. Negri, L., Noviello, L. and Noviello, V. (1985). Effects of sauvagine, urotensin I and CRF on food intake in rats. Peptides, 6 (Suppl. 3), 53–57

    PubMed  CAS  Google Scholar 

  44. Eaves, M., Thatcher-Britton, K., Rivier, J., Vale, W. and Koob, G.F. (1985). Effects of corticotropin releasing factor on locomotor activity in hypophysectomized rats. Peptides, 6, 923–926

    PubMed  CAS  Google Scholar 

  45. Graf, M., Zadina, J.E. and Schoenenberger, G.A. (1982). Amphetamine-induced locomotor behavior of mice is influenced by DSIP. Peptides, 3, 729–731

    PubMed  CAS  Google Scholar 

  46. Olson, G.A., Roig-Smith, R., Mauk, M.D., LaHoste, G.J., Coy, D.H., Hill, C.W. and Olson, R.D. (1981). Differential effects of neuropeptides on short-term memory in primates. Peptides, 2 (Suppl. 1), 131–136

    PubMed  CAS  Google Scholar 

  47. Ren, M.F., Lu, C.H. and Han, J.S. (1985). Dynorphin-A-(1-13) antagonizes morphine analgesia in the brain and potentiates morphine analgesia in the spinal cord. Peptides, 6, 1015–1020

    PubMed  CAS  Google Scholar 

  48. Petrie, E.C., Tiffany, S.T., Baker, T.B. and Dahl, J.L. (1982). Dynorphin (1–13): analgesia, hypothermia, cross-tolerance with morphine and beta-endorphin. Peptides, 3, 41–47

    PubMed  CAS  Google Scholar 

  49. De Caro, G., Massi, M., Micossi, L.G. and Perfumi, M. (1982). Angiotensin II antagonists versus drinking induced by bombesin or eledoisin in pigeons. Peptides, 3, 631–636

    PubMed  Google Scholar 

  50. Vilberg, T.R., Panksepp, J., Kastin, A.J. and Coy, D.H. (1984). The pharmacology of endorphin modulation of chick distress vocalization. Peptides, 5, 823–827

    PubMed  CAS  Google Scholar 

  51. Tan, D. and Tsou, K. (1985). Differential motor and blood pressure effects of intrathecal oxytocin and TRH in the rat. Peptides, 6, 1191–1193

    PubMed  CAS  Google Scholar 

  52. Bajorek, J.G. and Lomax, P. (1982). Modulation of spontaneous seizures in the mongolian gerbil: effects of beta-endorphin. Peptides, 3, 83–86

    PubMed  CAS  Google Scholar 

  53. Bloom, A.S. and Tseng, L. (1981). Effects of beta-endorphin on body temperature in mice at different ambient temperatures. Peptides, 2, 293–297

    PubMed  CAS  Google Scholar 

  54. Yehuda, S., Zadina, J., Kastin, A.J. and Coy, D.H. (1980). D-amphetamine-induced hypothermia and hypermotility in rats: changes after systemic administration of beta-endorphin. Peptides, 1, 179–185

    PubMed  CAS  Google Scholar 

  55. Hoehler, F.K. and Sandman, C.A. (1981). Effects of alpha-MSH and beta-endorphin on startle reflex in rat. Peptides, 2 (Suppl. 1), 137–141

    PubMed  CAS  Google Scholar 

  56. Kiraly, I., Tapfer, M., Borsy, J. and Graf, L. (1981). Further evidence for the neuroleptic-like activity of γ-endorphin. Peptides, 2, 9–12

    PubMed  CAS  Google Scholar 

  57. Giles, T.D. and Sander, G.E. (1983). Mechanism of the cardiovascular response to systemic intravenous administration of leucine-enkephalin in the conscious dog. Peptides, 4, 171–175

    PubMed  CAS  Google Scholar 

  58. Sakurada, T., Sakurada, S., Watanabe, S., Matsumura, H., Kisara, K., Akutsu, Y., Sasaki, Y. and Suzuki, K. (1983). Actions of intracerebroventricular administration of kyotorphin and an analog on thermoregulation in the mouse. Peptides, 4, 859–863

    PubMed  CAS  Google Scholar 

  59. Stickrod, G., Kimble, D.P. and Smotherman, W.P. (1982). Met-enkephalin effects on associations formed in utero. Peptides, 3, 881–883

    PubMed  CAS  Google Scholar 

  60. Honde, C. and Bueno, L. (1984). Evidence for central neuropeptidergic control of rumination in sheep. Peptides, 5, 81–83

    PubMed  CAS  Google Scholar 

  61. Olson, R.D., Kastin, A.J., von Almen, T.K., Coy, D.H. and Olson, G.A. (1980). Systemic injections of gastro-intestinal peptides alter behavior in rats. Peptides, 1, 383–385

    PubMed  CAS  Google Scholar 

  62. Geary, N. and Smith, G.P. (1982). Pancreatic glucagon fails to inhibit sham feeding in the rat. Peptides, 3, 163–166

    PubMed  CAS  Google Scholar 

  63. Twery, M.J. and Moss, R.L. (1985). Sensitivity of rat forebrain neurons to growth hormone-releasing hormone. Peptides, 6, 609–613

    PubMed  CAS  Google Scholar 

  64. Bueno, L., Fioramonti, J. and Primi, M.P. (1985). Central effects of growth hormone-releasing factor (GRF) on intestinal motility in dogs: involvement of dopaminergic receptors. Peptides, 6, 403–407

    PubMed  CAS  Google Scholar 

  65. Rothfield, J.M., Carstens, E. and Gross, D.S. (1985). Neuronal responsiveness to gonadotropin-releasing hormone and its correlation with sexual receptivity in the rat. Peptides, 6, 603–608

    Google Scholar 

  66. Ehrensing, R.H., Kastin, A.J. and Schally, A.V. (1981). Behavioral and hormonal effects of prolonged high doses of LHRH in male impotency. Peptides, 2 (Suppl. 1), 115–121

    PubMed  CAS  Google Scholar 

  67. Guglietta, A., Strunk, C.L., Irons, B.J. and Lazarus, L.H. (1985). Central neuromodulation of gastric acid secretion by bombesin-like peptides. Peptides, 6 (Suppl. 3), 75–81

    PubMed  CAS  Google Scholar 

  68. Teskey, G.C. and Kavaliers, M. (1985). Prolyl-leucyl-glycinamide reduces aggression and blocks defeat-induced opioid analgesia in mice. Peptides, 6, 165–167

    PubMed  CAS  Google Scholar 

  69. Datta, P.C., Sandman, C.A. and Hoehler, F.K. (1982). Attenuation of morphine analgesia by alpha-MSH, MIF-1, melatonin and naloxone in the rat. Peptides, 3, 443–437

    Google Scholar 

  70. Cashner, F.M., Olson, R.D., Erickson, D.G. and Olson, G.A. (1981). Effects of MIF-1 and sex differences on tonic immobility duration in the lizard Anolis carolinensis. Peptides, 2 (Suppl. 1), 161–165

    PubMed  CAS  Google Scholar 

  71. Chiu, P., Rajakumar, G., Chiu, S., Johnson, R.L. and Mishra, R.K. (1985). Mesolimbic and striatal dopamine receptor supersensitivity: prophylactic and reversal effects of L-prolyl-L-leucyl-glycinamide (PLG). Peptides, 6, 179–183

    PubMed  CAS  Google Scholar 

  72. O’Donohue, T.L., Handelmann, G.E., Chaconas, T., Miller, R.L. and Jacobowitz, D.M. (1981). Evidence that N-acetylation regulates the behavioral activity of alpha-MSH in the rat and human central nervous system. Peptides, 2, 333–334

    PubMed  Google Scholar 

  73. Glyn-Ballinger, J.R., Bernardini, G.L. and Lipton, J.M. (1983). Alpha-MSH injected into the septal region reduces fever in rabbits. Peptides, 4, 199–203

    PubMed  CAS  Google Scholar 

  74. Lipton, J.M. and Glyn, J.R. (1980). Central administration of peptides alters thermoregulation in the rabbit. Peptides, 1, 15–18

    PubMed  CAS  Google Scholar 

  75. Nowell, N.W., Thody, A.J. and Woodley, R. (1980). The source of an aggression-promoting olfactory cue, released by alpha-melanocyte stimulating hormone, in the male mouse. Peptides, 1, 69–72

    PubMed  CAS  Google Scholar 

  76. Sandman, C.A., Beckwith, B.E. and Kastin, A.J. (1980). Are learning and attention related to the sequence of amino acids in ACTH/MSH peptides? Peptides, 1, 277–280

    PubMed  CAS  Google Scholar 

  77. Wimersma Greidanus, T.J.B. van (1980). MSH/ACTH 4–10: a tool to differentiate between the role of vasopressin in memory consolidation or retrieval processes. Peptides, 3, 7–11

    Google Scholar 

  78. Carter, D.A., Vallejo, M. and Lightman, S.L. (1985). Cardiovascular effects of neuropeptide Y in the nucleus tractus solitarius of rats: relationship with noradrenaline and vasopressin. Peptides, 6, 421–425

    PubMed  CAS  Google Scholar 

  79. Stanley, B.G., Daniel, D.R., Chin, A.S. and Leibowitz, S.F. (1985). Paraventricular nucleus injections of peptide YY and neuropeptide Y preferentially enhance carbohydrate ingestion. Peptides, 6, 1205–1211

    PubMed  CAS  Google Scholar 

  80. Levine, A.S. and Morley, J.E. (1984). Neuropeptide Y: a potent inducer of consumma-tory behavior in rats. Peptides, 5, 1025–1029

    PubMed  CAS  Google Scholar 

  81. Carraway, R. and Bhatnagar, Y.M. (1980). Isolation, structure and biological activity of chicken intestinal neurotensin. Peptides, 1, 167–174

    PubMed  CAS  Google Scholar 

  82. Myers, R.D. and Lee, T.F. (1983). In vivo release of dopamine during perfusion of neurotensin in substantia nigra of the unrestrained rat. Peptides, 4, 955–961

    PubMed  CAS  Google Scholar 

  83. Napier, T.C., Gay, D.A., Hulebak, K.L. and Breese, G.R. (1985). Behavioral and biochemical assessment of time-related changes in globus pallidus and striatal dopamine induced by intranigrally administered neurotensin. Peptides, 6, 1057–1068

    PubMed  CAS  Google Scholar 

  84. Wu, M., Harding, K., Hugenholtz, H. and Kucharczyk, J. (1985). Emetic effects of centrally administered angiotensin II, arginine vasopressin and neurotensin in the dog. Peptides, 6 (Suppl. 1), 173–175

    PubMed  CAS  Google Scholar 

  85. Martin, G.E., Bacino, C.B. and Papp, N.L. (1980). Hypothermia elicited by the intracerebral microinjection of neurotensin. Peptides, 1, 333–339

    PubMed  CAS  Google Scholar 

  86. Stanley, B.G., Hoebel, B.G. and Leibowitz, S.F. (1983). Neurotensin: effects of hypothalamic and intravenous injections on eating and drinking in rats. Peptides, 4, 493–500

    PubMed  CAS  Google Scholar 

  87. Rogers, R.C. and Hermann, G.E. (1985). Dorsal medullary oxytocin, vasopressin, oxytocin antagonist, and TRH effects on gastric acid secretion and heart rate. Peptides, 6, 1143–1148

    PubMed  CAS  Google Scholar 

  88. Kordower, J.H. and Bodnar, R.J. (1984). Vasopressin analgesia: specificity of action and non-opioid effects. Peptides, 5, 747–756

    PubMed  CAS  Google Scholar 

  89. King, M.G., Brown, R. and Kusnecov, A. (1985). An increase in startle response in rats administered oxytocin. Peptides, 6, 567–568

    PubMed  CAS  Google Scholar 

  90. Pucilowski, D., Kostowski, W. and Trzaskowska, E. (1985). The effect of oxytocin and fragment (MIF-1) on the development of tolerance to hypothermic and hypnotic action of ethanol in the rat. Peptides, 6, 7–10

    PubMed  CAS  Google Scholar 

  91. Levine, A.S., Sievert, C.E., Morley, J.E., Gosnell, B.A. and Silvis, S.E. (1984). Peptidergic regulation of feeding in the dog (Canis familiaris). Peptides, 5, 675–679

    PubMed  CAS  Google Scholar 

  92. Jolicoeur, F.B., Rondeau, D.B., Belanger, F., Fouriezos, G. and Barbeau, A. (1980). Influence of substance P on the behavioral changes induced by haloperidol in rats. Peptides, 1,103–107

    PubMed  CAS  Google Scholar 

  93. Christ, H. (1985). Effects of MET-ENK, substance P and SRIF on the behavior of Hemichromis bimaculatus. Peptides, 6, 139–148

    PubMed  CAS  Google Scholar 

  94. Sander, G.E., Giles, T.D. and Rice, J.C. (1985). Cardiovascular interactions between methionine-enkephalin and substance P in the conscious dog. Peptides, 6, 133–137

    PubMed  CAS  Google Scholar 

  95. Hall, M.E. and Stewart, J.M. (1984). Modulation of isolation-induced fighting by N- and C-terminal analogs of substance P: evidence for multiple recognition sites. Peptides, 5, 85–89

    PubMed  CAS  Google Scholar 

  96. Wakabayashi, I., Tonegawa, Y. and Shibasaki, T. (1983). Hyperthermic action of somatostatin-28. Peptides, 4, 325–330

    PubMed  CAS  Google Scholar 

  97. Huffman, L.J., Campbell, G.T. and Gilmore, J.P. (1983). Renal function and pituitary hormone release during cerebral osmostimulation and TRH in dogs. Peptides, 4, 843–847

    PubMed  CAS  Google Scholar 

  98. Drust, E.G. and Crawford, I.L. (1983). Comparison of the effects of TRH and D-Ala2-Metenkephalinamide on hippocampal electrical activity and behavior in the unanesthet-ized rat. Peptides, 4, 239–243

    PubMed  CAS  Google Scholar 

  99. Katsuura, G., Yoshikawa, K., Itoh, S. and Hsiao, S. (1984). Behavioral effects of thyrotropin releasing hormone in frontal decorticated rats. Peptides, 5, 899–903

    PubMed  CAS  Google Scholar 

  100. Itoh, S., Katsuura, G. and Yoshikawa, K. (1985). Hypermotility induced by vasoactive intestinal peptide in the rat; its reciprocal action to cholecystokinin octapeptide. Peptides, 6, 53–57

    PubMed  CAS  Google Scholar 

  101. Drucker-Colin, R., Bernal-Pedraza, J., Fernandez-Cancino, F. and Oksenberg, A. (1984). Is vasoactive intestinal polypeptide (VIP) a sleep factor? Peptides, 5, 837–840

    PubMed  CAS  Google Scholar 

  102. Gash, D. and Sladek, J.R. (1980). Vasopressin neurons grafted into Brattleboro rats: viability and activity. Peptides, 1, 11–14

    PubMed  CAS  Google Scholar 

  103. Greidanus, T.B.V.W. and Veldhuis, H.D. (1985). Vasopressin: site of behavioral action and role in human mental performance. Peptides, 6 (Suppl. 2), 177–180

    Google Scholar 

  104. Davis, J.L., Pico, R.M. and Cherkin, A. (1983). Prolyl-L-arginyl-glycineamide induces memory enhancement in chicks. Peptides, 4, 401–404

    PubMed  CAS  Google Scholar 

  105. Lee, R.J. and Lomax, P. (1983). Thermoregulatory, behavioral and seizure modulatory effects of AVP in the gerbil. Peptides, 4, 801–805

    PubMed  CAS  Google Scholar 

  106. Ehrensing, R.H., Michell, G.F. and Baker, R.P. (1982). Vasopressin’s effects on acquisition and extinction of conditioned avoidance response to smoking. Peptides, 3, 527–530

    PubMed  CAS  Google Scholar 

  107. Fehm-Wolfsdorf, G., Born, J., Elbert, T., Voigt, K. and Fehm, H.L. (1985). Vasopressin does not enhance memory processes: a study in human twins. Peptides, 6, 297–300

    PubMed  CAS  Google Scholar 

  108. Gash, D., Sladek, C.D. and Sladek, J.R.J. (1980). A model system for analyzing functional development of transplanted peptidergic neurons. Peptides, 1 (Suppl. 1), 125–134

    CAS  Google Scholar 

  109. Myers, R.D., Critcher, E.C. and Cornwell, N.N. (1983). Effect of chronic vasopressin treatment on alcohol drinking of Brattleboro HZ and DI rats. Peptides, 4, 359–366

    PubMed  CAS  Google Scholar 

  110. Davis, J.L. and Pico, R.M. (1984). Arginine vasotocin delays extinction of a conditioned avoidance behavior in neonatal chicks. Peptides, 5, 1221–1223

    PubMed  CAS  Google Scholar 

  111. Pavel, S., Goldstein, M., Petrescu, M. and Popa, M. (1981). REM sleep induction in prepubertal boys by vasotocin: evidence for the involvement of serotonin containing neurons. Peptides, 2, 245–250

    PubMed  CAS  Google Scholar 

  112. Pavel, S., Goldstein, R. and Petrescu, M. (1980). Vasotocin, melatonin and narcolepsy: possible involvement of the pineal gland in its patho-physiological mechanism. Peptides, 1, 281–284

    PubMed  CAS  Google Scholar 

  113. Beckwith, B.E, and Tinius, T.P. (1985). Vasopressin and vasotocin facilitate reversal of a brightness discrimination. Peptides, 6, 383–386

    PubMed  CAS  Google Scholar 

  114. Goldstein, R. (1984). The involvement of arginine vasotocin in the maturation of the kitten brain. Peptides, 5, 25–28

    PubMed  CAS  Google Scholar 

  115. Zerbe, R.L., Kirtland, S., Faden, A.I. and Feuerstein, G. (1983). Central cardiovascular effects of mammalian neurohypophysial peptides in conscious rats. Peptides, 4, 627–630

    PubMed  CAS  Google Scholar 

  116. Kulkosky, P.J., Roque, M. and Sanchez, M.R. (1985). Bombesin and litorin inhibit ethanol intake. Peptides, 6 (Suppl. 2), 103–105

    PubMed  CAS  Google Scholar 

  117. Rigter, H. and Crabbe, J.C. (1985). Vasopressin and ethanol preference. I. Effects of vasopressin and the fragment DGAVP on altered ethanol preference in Brattleboro diabetes insipidus rats. Peptides, 6, 669–676

    PubMed  CAS  Google Scholar 

  118. Denbow, D.M. and Myers, R.D. (1982). Eating, drinking and temperature responses to intracerebroventricular cholecystokinin in the chick. Peptides, 3, 739–743

    PubMed  CAS  Google Scholar 

  119. Deviche, P. and Schepers, G. (1984). Intracerebroventricular injection of ostrich beta-endorphin to satiated pigeons induces hyperphagia but not hyperdipsia. Peptides, 5, 691–694

    PubMed  CAS  Google Scholar 

  120. Olson, R.D., Kastin, A.J., Olson, G.A., King, B.M., von Almen, T.K., Berzas, M.C., Ibanez, M.L. and Coy, D.H. (1980). MIF-1 suppresses deprivation-induced fluid consumption in rats. Peptides, 1, 353–357

    PubMed  CAS  Google Scholar 

  121. Frye, G.D., Luttinger, D., Nemeroff, C.B., Vogel, R.A., Prange, A.J. and Breese, G.R. (1981). Modification of the actions of ethanol by centrally active peptides. Peptides, 2 (Suppl. 1), 99–106

    PubMed  CAS  Google Scholar 

  122. Woods, S.C., Taborsky, C.J. and Porte, D.T. (1986). Central nervous system control of nutrient homeostasis. Handbook Physiol., Section 1, Volume IV, 365–411 (Am. Physiol. Soc.)

    Google Scholar 

  123. Figlewicz, D.P., Lacour, F., Sipols, A., Porte, D.T. and Woods, S.C. (1987). Gastroen-teropancreatic peptides and the central nervous system. Ann. Rev. Physiol., 49,383–395

    CAS  Google Scholar 

  124. Tannenbaum, C.S. and Coltzman, D. (1985). Calcitonin gene-related peptide mimics calcitonin actions in brain on growth hormone release and feeding. J. Endocrinol., 116, 2685–2687

    CAS  Google Scholar 

  125. Kyzkouli, S.E., Stanley, B.G. and Leibowitz, S.F. (1985). Galanin: stimulation of feeding induced by medial hypothalamic injection of this novel peptide. Psychopharmacol. Bull, 21, 412–418

    Google Scholar 

  126. Brown, R. and King, M.G. (1984). Arginine vasotocin and aggression in rats. Peptides, 5, 1135–1138

    PubMed  CAS  Google Scholar 

  127. Fornal, C., Markus, R. and Radulovacki, M. (1984). Muramyl dipeptide does not induce slow-wave sleep or fever in rats. Peptides, 5, 91–95

    PubMed  CAS  Google Scholar 

  128. Nistico, G., Bagetta, G. and De Sarro, G.B. (1985). Behavioral and spectrum power effects of opioid peptides in chicks. Peptides, 6 (Suppl. 3), 137–141

    PubMed  CAS  Google Scholar 

  129. Hoffman, P.L., Szabo, G. and Tabakoff, B. (1988). The effects of vasopressin and related peptides on tolerance to ethanol. In: Peptide and Amino Acid Transport Mechanisms in Central Nervous System, eds., Lj. Rakic, D.L. Begley, H. Davson and B.V. Zlokovic (Macmillan, London) 147–156

    Google Scholar 

  130. Beckwith, B.E., Petros, T., Kanaan-Beckwith, S., Couk, D.I. and Haug, R.J. (1982). Vasopressin analog (DDAVP) facilitates concept learning in human males. Peptides, 3, 627–630

    PubMed  CAS  Google Scholar 

  131. Beckwith, B.E., Couk, D.I. and Till, T.S. (1983). Vasopressin analog influences the performance of males on a reaction time task. Peptides, 4, 707–709

    PubMed  CAS  Google Scholar 

  132. Hoehler, F.K. and Sandman, C.A. (1981). Effects of alpha-MSH and beta-endorphin on startle reflex in rat. Peptides, 2 (Suppl. 2), 137–141

    PubMed  CAS  Google Scholar 

  133. Hoffman, P.L. (1987). Central nervous system effects of neurohypophysical peptides. In: The Peptides Vol. 8, ed., C.W. Smith (Academic Press, New York), 239–295

    Google Scholar 

  134. Cohen, S.L., Knight, M., Tamminga, C.A. and Chase, T.N. (1983). Tolerance to the antiavoidance properties of cholecystokinin-octapeptide. Peptides, 4, 67–70

    PubMed  CAS  Google Scholar 

  135. Hamburger-Bar, R., Klein, A. and Belmaker, R.H. (1985). The effect of chronic vs. acute injection of vasopressin on animal learning and memory. Peptides, 6, 23–25

    PubMed  CAS  Google Scholar 

  136. Wimersma Greidanius, T.J.B. van. (1982). MSH/ACTH 4–10: A tool to differentiate between the role of vasopressin in memory consolidation or retrieval processes. Peptides, 3, 7–11

    Google Scholar 

  137. Susie, V., Masirevic, G. and Totic, S. (1987). The effects of delta sleep inducing peptides (DSIP) on wakefulness and sleep patterns in the cat. Brain Res., 414, 262–270

    Google Scholar 

  138. Zerbe, R.L., Kirtland, S., Faden, A.I. and Feuerstein, G. (1983). Central cardiovascular effects of mammalian neurohypophysical peptides in conscious rats. Peptides, 4, 627–630

    PubMed  Google Scholar 

  139. Tan, D. and Tsou, K. (1985). Differential motor and blood pressure effects of intrathecal oxytocin and TRH in the rat. Peptides, 6, 1191–1193

    PubMed  Google Scholar 

  140. Feuerstein, G., Hassen, A.H. and Faden, A.I. (1983). TRH: cardiovascular and sympathetic modulation in brain nuclei of the rat. Peptides, 4, 617–620

    PubMed  Google Scholar 

  141. Varagic, V.M., Stojanovic, V. and Dzoljic, E. (1988). The effect of enkephalins and enkephalinase inhibitors on the central cholinergic mechanisms participating in the peripheral adrenergic activation. In: Peptide and Amino Acid Transport Mechanisms in the Central Nervous System, eds., Lj. Rakic, D. Begley, H. Davson and B.V. Zlokovic, (Macmillan, London), 157–166

    Google Scholar 

  142. Hassen, A.H., Feuerstein, G. and Faden, A.I. (1983). Differential cardiovascular effects mediated by mu and kappa opiate receptors in hindbrain nuclei. Peptides, 4, 621–625

    PubMed  CAS  Google Scholar 

  143. Rogers, R.C. and Hermann, G.E. (1985). Dorsal medullary oxytocin, vasopressin, oxytocin antagonist, and TRH effects on gastric acid secretion and heart rate. Peptides, 6, 1143–1148

    PubMed  CAS  Google Scholar 

  144. Giles, T.D. and Sander, G.E. (1983). Mechanism of the cardiovascular response to systemic intravenous administration of leucine-enkephalin in the conscious dog. Peptides, 4, 171–175

    PubMed  CAS  Google Scholar 

  145. Huffman, L.J., Campbell, G.T. and Gilmore, J.P. (1983). Renal function and pituitary hormone release during cerebral osmostimulation and TRH in dogs. Peptides, 4, 843–347

    PubMed  CAS  Google Scholar 

  146. Tenner, T.E.J., Yang, C.M., Chang, J.K., Schimizu, M. and Pang, P.K.T. (1980). Pharmacological comparison of bPTH-(l-34) and other hypotensive peptides in the dog. Peptides, 1, 285–288

    PubMed  CAS  Google Scholar 

  147. Kalin, N.H., Shelton, S.E., Kraemer, G.W. and McKinney, W.T. (1983). Associated endocrine, physiological and behavioral changes in Rhesus monkeys after intravenous corticotropin-releasing factor administration. Peptides, 4, 211–215

    PubMed  CAS  Google Scholar 

  148. Guglietta, A., Strunk, C.L., Irons, B.J. and Lazarus, L.H. (1985). Central neuromodulation of gastric acid secretion by bombesin-like peptides. Peptides, 6 (Suppl. 3), 75–81

    PubMed  CAS  Google Scholar 

  149. Tache, Y., Vale, W., Rivier, J. and Brown, M. (1981). Brain regulation of gastric acid secretion in rats by neurogastrointestinal peptides. Peptides, 2 (Suppl. 2), 51–55

    PubMed  CAS  Google Scholar 

  150. Goto, Y. and Tache, Y. (1985). Gastric erosions induced by intracisternal thyrotropin-releasing hormone (TRH) in rats. Peptides, 6, 153–156

    PubMed  CAS  Google Scholar 

  151. Goto, Y. and Tache, Y. (1985). Gastric erosions induced by intracisternal thyrotropin-releasing hormone (TRH) in rats. Peptides, 6, 153–156

    PubMed  CAS  Google Scholar 

  152. Niewoehner, D.E., Levine, A.S. and Morley, J.E. (1983). Central effects of neuropeptides on ventilation in the rat. Peptides, 4, 277–281

    PubMed  CAS  Google Scholar 

  153. Holaday, J.W. (1982). Cardiorespiratory effects of μ and δ opiate agonists following third or fourth ventricular injections. Peptides, 3, 1023–1029

    PubMed  CAS  Google Scholar 

  154. Wilson, K.M. and Fregley, M.J. (1985). Factors affecting angiotensin II-induced hypothermia in rats. Peptides, 6, 695–701

    PubMed  CAS  Google Scholar 

  155. Morley, J.E., Levine, A., Oken, M.M., Grace, M. and Kneip, J. (1982). Neuropeptides and thermoregulation: the interactions of bombesin, neurotensin, TRH, somatostatin, naloxone and prostaglandins. Peptides, 3, 1–6

    PubMed  CAS  Google Scholar 

  156. Lipton, J.M. and Glyn, J.R. (1980). Central administration of peptides alters thermoregulation in the rabbit. Peptides, 1, 15–18

    PubMed  CAS  Google Scholar 

  157. Yehuda, S. and Kastin, A J. (1980). Interaction of MIF-1 or alpha-MSH and d-amphetamine or chlorpromazine on thermoregulation and motor activity of rats maintained at different ambient temperatures. Peptides, 1, 243–248

    PubMed  CAS  Google Scholar 

  158. Denbow, D.M. and Myers, R.D. (1982). Eating, drinking and temperature responses to intracerebroventricular cholecystokinin in the chick. Peptides, 3, 739–743

    PubMed  CAS  Google Scholar 

  159. Goldman, H., Krasnewich, D., Murphy, S. and Schneider, D. (1982). An analog of ACTH/MSH (4–9), ORG-2766 reduces cerebral uptake of morphine. Peptides, 3, 649–653

    PubMed  CAS  Google Scholar 

  160. Fave, G.D., Annibale, B., De Magistris, L., Severi, C., Bruzzone, R., Pouti, M., Melchiorri, P., Torsoli, A. and Erspamer, V. (1985). Bombesin effects on human GI functions. Peptides, 6 (Suppl. 3), 113–116

    Google Scholar 

  161. Goldstein, A., Tachibana, S., Lowney, L.I., Hunkapiller, M. and Hood, L. (1979). Dynorphin-(l-13), an extraordinarily potent opioid peptide. Proc. Natl Acad. Sci. USA, 76, 6666–6670

    PubMed  CAS  Google Scholar 

  162. Sawyer, T.K., Sanfilippo, P.J., Hruby, V.J., Engel, M.H., Heward, C.B., Burnett, J.B. and Hadley, M.E. (1980). 4-Norleucine, 7-D-phenylalanine-alpha-melanocyte-stimulating hormone: a highly potent alpha-melanotropin with ultralong biological activity. Proc. Natl Acad. Sci. USA, 77, 5754–5758

    PubMed  Google Scholar 

  163. Burbach, J.P., Kovacs, G.L., de Wied, D., van Nispen, J.W. and Greven, H.M. (1983). A major metabolite of arginine vasopressin in the brain is a highly potent neuropeptide. Science, 221, 1310–1312

    PubMed  CAS  Google Scholar 

  164. Pals, D.T., Masucci, F.D. and Denning, G.S. (1971). Role of the pressor action of angiotensin II in experimental hypertension. Circ. Res, 29, 673–181

    PubMed  CAS  Google Scholar 

  165. Vavrek, R.J. and Stewart, J.M. (1985). Competitive antagonists of bradykinin. Peptides, 6, 101–164

    Google Scholar 

  166. Siggins, G.R. and Groul, D.L. (1986). Synaptic mechanisms in the vertebrate central nervous system. In: Handbook of Physiology, ed., F.E. Bloom. Volume on Intrinsic Regulatory Systems of the Brain, The American Physiological Society, Bethesda,Maryland, 1–114

    Google Scholar 

  167. Snyder, S.H. (1980). Brain peptides as neurotransmitters. Science, 209, 976–983

    PubMed  CAS  Google Scholar 

  168. Bloom, F.E. (1984). The functional significance of neurotransmitter diversity. Am. J. Physiol., 246, C184–C194

    PubMed  CAS  Google Scholar 

  169. Bloom, F.E. (1984). Chemical integrative processes in the central nervous system. In: Handbook of Chemical Neuroanatomy, 51–58

    Google Scholar 

  170. Bloom, F.E. (1987). Molecular diversity and cellular functions of neuropeptides. In: Neuropeptides and Brain Function, eds., E.R. de Kloet, N.M. Wiegant and D. de Wied. Prog. in Brain Res., Vol. 72, 213–223

    Google Scholar 

  171. de Wied, D. (1987). The neuropeptide concept. In: Neuropeptides and Brain Function, eds., E.R. de Kloet, N.M. Wiegant and D. de Wied, Prog. Brain Res., Vol. 72, 93–108

    Google Scholar 

  172. Iversen, L.L., Lee, C.M., Gilbert, R.F., Hunt, S. and Emson, P.C. (1980). Regulation of neuropeptide release. Proc. R. Soc., 210, 91–111

    CAS  Google Scholar 

  173. Buijs, R.M. and Van Heerikhuize, J.J. (1982). Vasopressin and oxytocin release in the brain — a synaptic event. Brain Res., 252, 71–76

    PubMed  CAS  Google Scholar 

  174. Lackoff, A. and Jackson, I.M.D. (1981). Calcium dependency of potassium-stimulated thyrotropin-releasing hormone secretion from rat neurohypophysis in vitro. Neurosci. Lett., 27,17

    Google Scholar 

  175. Urban, I.J.A. (1981). Brain vasopressin: from electrophysiological effects to neurophy-siological function. In: Neuropeptides and Brain Function, eds., E.R. de Kloet, V.M. Wiegant and D. de Wied, Progress in Brain Research, Vol. 72, 163–172

    Google Scholar 

  176. Dodd, J. and Kelly, J.S. (1981). The actions of cholecystokinin and related peptides on pyramidal neurones of the mammalian hippocampus. Brain Res., 205, 337–350

    PubMed  CAS  Google Scholar 

  177. North, A.R. (1986). Electrophysiological effects of neuropeptides. In: Neuropeptides in Neurologic and Psychiatric Disease, eds., J.B. Martin and J.D. Broebes. (Raven Press, New York), 71–77

    Google Scholar 

  178. Kelly, J.S. (1982). Electrophysiology of peptides in the central nervous system. Br. Med. Bull., 38, 283–290

    PubMed  CAS  Google Scholar 

  179. North, RA. and Egan, T.M. (1982). Electrophysiology of peptides in the peripheral nervous system. Br. Med. Bull., 38, 291–296

    PubMed  CAS  Google Scholar 

  180. Hokfelt, T., Lundberg, J.M., Schutzberg, M., Johansson, O., Ljungdahl, A. and Rehfeld, J. (1980). Coexistence of peptides and putative transmitters in neurons. In: Neural Peptides and Neuronal Communication, eds., E. Costa and M. Trabucchi, (Raven Press, New York), 1–23

    Google Scholar 

  181. Krieger, D.T. (1986). An overview of neuropeptides. In: Neuropeptides in Neurologic and Psychiatric Disease, eds., J.B. Martin and J.D. Barkas, (Raven Press, New York), 1–32

    Google Scholar 

  182. Quirion, R. (1983). Interactions between neurotensin and dopamine in the brain: an overview. Peptides, 4, 609–615

    PubMed  CAS  Google Scholar 

  183. Meisenberg, G. and Simmons, W.H. (1985). Motor hypoactivity induced by neurotensin and related peptides in mice. Pharmacol. Biochem. Behav., 22, 189–193

    PubMed  CAS  Google Scholar 

  184. Kalivas, P.W. (1985). Interactions between neuropeptides and dopamine neurons in the ventromedial mesencephalon. Neurosci. Biobehav. Rev., 9, 573–587

    PubMed  CAS  Google Scholar 

  185. Kalivas, P.W., Burgess, S.K., Nemeroff, C.B. and Prange, Jr., A.J. (1983). Behavioral and neurochemical effects of neurotensin microinjection into the ventral tegmental area of the rat. Neuroscience, 8, 495–505

    PubMed  CAS  Google Scholar 

  186. Sarrieau, A., Javoy-Agid, F., Kitabgi, P., Dussaillant, M., Vial, M., Vincent, J.P., Agid, Y. and Rostène, W.H. (1985). Characterisation and autoradiographic distribution of neurotensin binding sites in human brain. Brain Res., 348, 375–80

    PubMed  CAS  Google Scholar 

  187. Rostene, W.H., Sarrieau, A., Moyse, E., Hervé, D., Kitalegi, P., Ewen, McB.S., Vial, M., Tassin, J.P., Vincent, J.P. and Beaudet, A. (1987). Imaging of neuropeptides-neurotransmitter interactions. In: Neuropeptides and Brain Function, eds., E.R. de Kloet, N.M. Wiegant and D. de Wied, Prog. Brain Res., Vol. 72, 213–223

    Google Scholar 

  188. Quiron, R., Chiueh, C.C., Everist, H.D. and Pert, A. (1985). Comparative localization of neurotensin receptors on nigrostriatal and mesolimbic dopaminergic terminals. Brain Res., 327, 385–389

    Google Scholar 

  189. Uhl, G.R. and Kuhar, M.J. (1984). Chronic neuroleptic treatment enhances neurotensin receptor binding in human and rat substantia nigra. Nature London, 309, 350–352

    PubMed  CAS  Google Scholar 

  190. Rostene, W.H., Herve, D., Kitabgi, P., Magre, J. and Sarrieau, A. (1986). Hormonal receptor plasticity in the brain as shown by in vitro quantitative autoradiography. In: Neuroendocrine Molecular Biology, eds., G. Fink, A.J. Harmer and K.W. McKerns, (Plenum Press, New York)

    Google Scholar 

  191. Agnati, L.F., Fuxe, K., Battistini, N., Giardino, L., Benfenati, F., Martire, M. and Ruggeri, M. (1985). Further evidence for the existence of interactions between receptors for dopamine and neurotensin. Dopamine reduces the affinity and increases the number of 3H-neurotensin binding sites in the subcortical limbic forebrain of the rat. Acta Physiol Scand., 124, 125–128

    PubMed  CAS  Google Scholar 

  192. Agnati, L.F., Fuxe, K., Benfenati, F. and Battistini, N. (1983). Neurotensin in vitro markedly reduces the affinity in subcortical limbic 3H-N-propyl-norapomorphine binding sites. Acta Physiol Scand., 119, 459–461

    PubMed  CAS  Google Scholar 

  193. Simasko, S.M. and Weiland, G.A. (1985). Effect of neurotensin, substance P and TRH on the regulation of dopamine receptors in rat brain. Eur. J. Pharmacol., 106, 653–656

    Google Scholar 

  194. Magistretti, P.J. and Morrison, J.H. (1985). VIP neurons in the neocortex. TINS, 8, 7–8

    CAS  Google Scholar 

  195. Morrison, J.H. and Magistretti, P.J. (1983). Monoamines and peptides in cerebral cortex: contrasting principles of cortical organization. TINS, 6, 146–151

    CAS  Google Scholar 

  196. Magistretti, P.J. and Schorderet, M. (1985). Norepinephrine and histamine potentiate the increases in cyclic adenosine 3′:5′-monophosphate elicited by vasoactive intestinal polypeptide in mouse cerebral cortical slices: mediation by α1-adrenergic and H1-his-taminergic receptors. J. Neurosci., 5, 363–368

    Google Scholar 

  197. Ferron, A., Siggins, G.R. and Bloom, F.E. (1985). Vasoactive intestinal polypeptide acts synergistically with noradrenaline to depress spontaneous discharge rates in cerebral cortical neurons. Proc. Natl Acad Sci. USA, 82, 8810–8812

    PubMed  CAS  Google Scholar 

  198. Rostene, W.H. (1984). Neurobiological and neuroendocrine functions of the vasoactive intestinal peptide (VIP). Prog. Neurobiol., 22, 103–129

    PubMed  CAS  Google Scholar 

  199. Bosler, O. and Beaudet, A. (1985). VIP neurons as prime synaptic targets for serotoninergic afferents in rat suprachiasmatic nucleus: a combined radioimmunological and immunocytochemical study. J. Neurocytol., 14, 749–763

    PubMed  CAS  Google Scholar 

  200. Mantillas, J.R., Siggins, G.R. and Bloom, F.E. (1986). Systemic ethanol: selective enhancement of responses to acetylcholine and somatostatin in hippocampus. Science, 231, 161–163

    Google Scholar 

  201. Mantillas, J.R., Siggins, G.R. and Bloom, F.E. (1986). Somatostatin-selectively enhances acetylcholine-induced excitations in rat hippocampus and cortex. Proc. Natl Acad. Sci. USA, 83, 7518–7521

    Google Scholar 

  202. Kordon, C., Blauet-Pajot, M.T., Clausen, H., Drouva, S., Enjabert, A. and Epelbaum, Y. (1987). New designs in neuroendocrine systems. In: Neuropeptides and Brain Function, eds., E.R. de Kloet, N.M. Wiegant and D. de Wied, Prog, in Brain Res., 72, 27–34

    Google Scholar 

  203. Michel, D., Lefevre, C. and Labrie, F. (1983). Interactions between growth hormone releasing factor, prostaglandin E2 and somatostatin on cyclic AMP accumulations in rat adenohypophysial cells in culture. Mol. Cell. Endocrinol., 33, 255–264

    PubMed  CAS  Google Scholar 

  204. Robertson, R.P. (1986). Characteristics and regulation of prostaglandin and leucotriene receptors: an overview. Prostaglandins, 31, 395–411

    PubMed  CAS  Google Scholar 

  205. Watson, S.P., Connell, R.Mc. and Lapetina, E.G. (1984). The rapid formation of inositol phosphates in human platelets stimulated by thrombin is inhibited by prostacycline. J. Biol. Chem., 259, 13199–13203

    PubMed  CAS  Google Scholar 

  206. Sibley, D. and Lefkowitz, R. (1985). Molecular mechanisms of receptor desensitization using the beta-adrenergic receptor coupled adenylate cyclase system as a model. Nature (London), 311, 124–129

    Google Scholar 

  207. Naor, Z. and Eli, Y. (1985). Synergistic stimulation of luteinizing hormone (LH) release by protein kinase C activator and Ca2+ ionophore. Biochem. Biophys. Res. Commun., 130, 848–853

    PubMed  CAS  Google Scholar 

  208. Soper, B.D. and Weick, R.F. (1980). Hypothalamic and extrahypothalamic mediation of pulsatile discharges of luteinizing hormone in the ovariectomized rat. Endocrinology, 106, 348–355

    PubMed  CAS  Google Scholar 

  209. Drouva, S.V. and Gallo, R.V. (1976). Catecholamine involvement in episodic luteinizing hormone release in adult overiectomized rats. Endocrinology, 99, 651–656

    PubMed  CAS  Google Scholar 

  210. Gudelsky, G.A. and Porter, J.C. (1979). Morphine and opioid peptide induced inhibition of the release of dopamine from tuberoinfundibular neurons. Life Sci., 25, 1697–1702

    PubMed  CAS  Google Scholar 

  211. Drouva, S.V., Epelbaum, J., Tapia-Arancibia, L., Laplante, E. and Kordon, C. (1981). Opiate receptors modulate LHRH and SRIF release from mediobasal hypothalamic neurons. Neuroendocrinology, 32, 163–168

    PubMed  CAS  Google Scholar 

  212. Miki, N., Ono, M. and Shizumi, K. (1984). Evidence that opiotergic and alpha-adrenergic mechanisms stimulate rat growth hormone release via growth hormone releasing factor (GRF). Endocrinology, 114, 1950–1952

    PubMed  CAS  Google Scholar 

  213. Wehrinberg, W.B., Block, B. and Ling, N. (1985). Pituitary secretion of growth hormone in response to opioid peptide and opiates is mediated through growth hormone releasing factor. Neuroendocrinology, 41, 13–16

    Google Scholar 

  214. Plotsky, P.M. and Vale, W. (1985). Patterns of growth hormone releasing factor and somatostatin secretion into the hypohysial portal circulation of the rat. Science, 230, 461–463

    PubMed  CAS  Google Scholar 

  215. Drouva, S., Laplante, E. and Kordon, C. (1982). I-Adrenergic receptor involvement in the LH surge in ovariectomized estrogen primed rats. Eur. J. Pharmacol., 81, 341–344.

    PubMed  CAS  Google Scholar 

  216. Honma, K. and Wuttke, W. (1980). Norepinephrine and dopamine turnover rates in the medial preoptic area and the mediobasal hypothalamus of the rat brain after various endocrinological manipulations. Endocrinology, 106, 1848–1853

    PubMed  CAS  Google Scholar 

  217. Flugge, G., Oertel, W.H. and Wuttke, W. (1986). Evidence for estrogen-receptive Gaba-ergic neurons in the preoptic/anterior hypothalamic area of the rat brain. Neuroendocrinology, 43, 1–5

    PubMed  CAS  Google Scholar 

  218. Rossier, J., French, E., Guillemen, R. and Bloom, F.E. (1980). On the mechanisms of simultaneous release of immunoreactive beta-endorphin and prolactin by stress. Adv. Biochem. Psychopharmacol., 22, 363–375

    PubMed  CAS  Google Scholar 

  219. Selye, H. (1950). Stress. The Physiology and Pathology of Exposure to Stress, Acta Medica Publ., Montreal

    Google Scholar 

  220. Palkovits, M. (1987). Organization of the stress response at the anatomical level. Prog. Brain Res., 72, 47–55

    PubMed  CAS  Google Scholar 

  221. Bohus, B., Benus, R.F., Fokkema, D.S., Koolheas, J.M., Nyakas, C., van Oortmerssen, G.A., Prins, A.J.A., de Ruiter, A.J.H., Scheurink, A.J.W. and Steffers, A.B. (1987). Neuroendocrine states and behavioral and physiological stress responses. Prog. Brain Res., 72, 57–70

    PubMed  CAS  Google Scholar 

  222. Allen, J.P., Allen, C.F., Greer, M.A. and Jacobs, J.J. (1973). Stress-induced secretion of ACTH. In: Brain-Pituitary-Adrenal Interrelationships, ed., A. Brodish. (Karger, Basel), 99–127

    Google Scholar 

  223. Ganong, W.F. (1980). Neurotransmitters and pituitary function: regulation of ACTH secretion. Fed. Proc., 39, 2923–2930

    PubMed  CAS  Google Scholar 

  224. Makara, G.B. (1985). Mechanisms by which stressful stimuli activate the pituitary-adrenal system. Fed. Proc., 45, 149–153

    Google Scholar 

  225. Rivier, C. and Vale, W. (1985). Effects of corticotropin-releasing factor, neurohypophyseal peptides, and catecholamines on pituitary function. Fed. Proc., 44, 189–195

    PubMed  CAS  Google Scholar 

  226. Tilders, F.J.H., Berkenbosch, F., Vermes, J., Linton, E.A. and Smelik, P.G. (1985). Role of epinephrine and vasopressin in the control of the pituitary-adrenal response to stress. Fed. Proc., 44, 155–160

    PubMed  CAS  Google Scholar 

  227. Gillies, G.E., Linton, E.A. and Lowry, P.J. (1982). Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature (London), 229, 355–357

    Google Scholar 

  228. Enjalbert, A., Sladeczek, F., Guillon, G., Bertrand, P., Shu, C., Epelbaum, J., Garcia-Sainz, J.A., Jard, S., Lombard, C., Kordon, C. and Bockaert, J. (1986). Angiotensin II and dopamine modulate both cAMP and inositol phosphate production in anterior pituitary cells. Involvement in prolactin secretion. J. Biol. Chem., 262, 4071

    Google Scholar 

  229. Huang, M. and Rorstad, O.P. (1983). Effects of vasoactive intestinal polypeptide, monoamines, prostaglandins, and 2-chloroadenosine on adenylate cyclase in rat cerebral microvessels. J. Neurochem., 40, 719–725

    PubMed  CAS  Google Scholar 

  230. Huang, M., Hanley, D.A. and Rorstad, O.P. (1983). Parathyroid hormone stimulates adenylate cyclase in rat cerebral microvessels. Life Sci., 32, 1009–1014

    PubMed  CAS  Google Scholar 

  231. Speth, R.C. and Harik, S.I. (1985). Angiotensin II receptor binding sites in brain microvessels. Proc. Natl. Acad. Sci., 82, 6340–6343

    PubMed  CAS  Google Scholar 

  232. Akmal, M.D., Goldstein, A., Multani, S. and Massry, S.G. (1984). Role of uremia, brain calcium and parathyroid hormone on changes in electroencephalogram in chronic renal failure. Am. J. Physiol., 246, F575–F579

    PubMed  CAS  Google Scholar 

  233. Derian, C.K. and Moskowitz, M.A. (1986). Polyphosphoinoside hydrolysis in endothelial cells and carotid artery segments. Bradykinin-2 receptor stimulation is calcium-dependent. J. Biol. Chem., 261, 3831–3837

    PubMed  CAS  Google Scholar 

  234. Hess, J., Gjedde, A. and Jessen, H. (1987). Vasopressin receptors at the blood-brain barrier in rats. Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturwiss. R., 36, 81–83

    CAS  Google Scholar 

  235. Spatz, M., Yamamoto, H., Lust, D.W., Wroblewska, B., Merkel, N. and Bembry, J. (1988). Peptides and cerebral microvessels. In: Peptide and Amino Acids in the Central Nervous Systems, eds., Lj. Rakic, D.J. Begley, H. Davson and B.V. Zlokovic, (Macmillan, London), 35–43

    Google Scholar 

  236. Kretzschmar, R., Landgraf, R., Gjedde, A. and Ermisch, A. (1986). Vasopressin binds to microvessels from rat hippocampus. Brain Res., 380, 325–330

    PubMed  CAS  Google Scholar 

  237. Ermisch, A. (1987). Blood-brain barrier and peptides. Wiss. Z. Karl-Marx-Univ. Leipzig, Marth.-Naturwiss. R., 36, 72–77

    CAS  Google Scholar 

  238. Ermisch, A., Landgraf, R., Brust, P., Kretzschmar, R. and Hess, J. (1988). Peptide receptors of the cerebral capillary endothelium and the transport of amino acids across the blood-brain barrier. In: Peptide and Amino Acid Transport Mechanisms in the Central Nervous System, eds., Lj. Rakic, D.J. Begley, H. Davson and B.V. Zlokovic, (Macmillan, London), 43–55

    Google Scholar 

  239. Petter, H. (1985). Immunozytochemische Untersuchungen zur moglichen Beteiligung des klassischen neurosekretorischen Systems an cerebralen Prozessen der Herz-Kreislauf-Regulation. J. Himforsch., 26, 477–496

    CAS  Google Scholar 

  240. Reith, J., Ermisch, A. and Gjedde, A. (1987). Saturable vasopressin retention in hippo-campal endothelium and in non-BBB brain regions (pineal and pituitary glands). Wiss. Z. Karl-Marx-Univ. Leipzig Math.-Naturwiss. R., 36, 87–90

    CAS  Google Scholar 

  241. Hess, J., Gjedde, A. and Jesscen, H. (1987). Vasopressin receptors at the blood-brain barrier in rats. Wiss. Z. Karl-Marx-Univ. Leipzig Math.-Naturwiss. R., 36, 81–83

    CAS  Google Scholar 

  242. Zlokovic, B.V., Begley, D.J., Segal, M.B., Davson, H., Rakic, Lj., Lipovac, N., Mitrovic, D.M. and Jankov, R.M. (1988). Neuropeptide transport mechanisms in the central nervous system. In: Peptide and Amino Acid Transport in the Central Nervous System, eds., Lj. Rakic, D.J. Begley, H. Davson and B.V. Zlokovic, (Macmillan, London), 3–21

    Google Scholar 

  243. Ermisch, A., Landgraf, R. and Mobius, P. (1986). Vasopressin and oxytocin in brain areas of rats with high or low behavioral performance. Brain Res., 379, 21–29

    Google Scholar 

  244. Pardridge, W. (1986). Receptor-mediated peptide transport through the blood-brain barrier. Endocr. Rev., 7 (3), 314–33

    PubMed  CAS  Google Scholar 

  245. Davson, H., Welch, K. and Segal, M.B. (1987). Physiology and Pathophysiology of the Cerebrospinal Fluid (Churchill Livingstone, Edinburgh)

    Google Scholar 

  246. van Houten, M. and Posner, B.I. (1983). Circumventricular organs: receptors and mediators of direct peptide hormone action on brain. In: Adv. Metab. Disorders Vol 10, ed., A. Szabo, (Academic Press, New York), 269–289

    Google Scholar 

  247. Baskin, D.G., Woods, S.C., West, D.B., van Houten, M., Posner, B.I., Dorsa, D.M. and Porte Jr., D. (1983). Immunocytochemical detection of insulin in rat hypothalamus and its possible uptake from cerebrospinal fluid. Endocrinology, 112, 1818–1825

    Google Scholar 

  248. Baskin, D.G., Dorsa, D.M., Figlewicz, D.P., Corp, E.S., Wilcox, B.J., Wallum, B.J. and Wood, S.C. (1988). Insulin as a regulatory peptide. In: Peptide and Amino Acid Transport Mechanisms in the Central Nervous System, eds., Lj. Rakic, D.J. Begley, H. Davson and B.V. Zlokovic, (Macmillan, London), 81–93

    Google Scholar 

  249. McKinley, M.J., Allen, A., Clevers, T., Dentin, D.A., Mendlesohn, F.A.O., Oldfield, B.J., Tarjan, E. and Weisirger, R.S. (1987). Angiotensin II receptors in the brain of the sheep. Wiss. Z. Karl-Marx-Univ. Leipzig Math.-Naturwiss. R., 36, 189–192

    Google Scholar 

  250. Walsh, R.J., Slaby, F. and Posner, B.I. (1987). Prolactin transport from blood to cerebrospinal fluid: a receptor mediated process. Wiss. Z. Karl-Marx-Univ. Leipzig Math.-Naturwiss. R., 36 (1), 119–120

    Google Scholar 

  251. Uddman, R., Edvinsson, L., Owman, C. and Sundler, F. (1981). Perivascular substance P: occurrence and distribution in mammalian pial vessels. J. Cereb. Blood Flow Metab., 1, 227–232

    PubMed  CAS  Google Scholar 

  252. Kapadia, S.E. and DeLanerolle, N.C. (1984). Immunohistochemical and electron microscopic demonstration of vascular innervation in the mammalian brainstem. Brain Res., 292, 33–39

    PubMed  CAS  Google Scholar 

  253. Uddman, R., Edvinsson, L., Owman, C. and Sundler, F. (1983). Nerve fibres containing gastrin-releasing peptide around pial vessels. J. Cereb. Blood Flow Metab., 3, 386–390

    PubMed  CAS  Google Scholar 

  254. Pardridge, W.M. (1986). Blood-brain barrier: interface between internal medicine and the brain. Ann. Intern. Med., 105, 82–95

    PubMed  CAS  Google Scholar 

  255. Chan-Palay, V. (1977). Innervation of cerebral blood vessels by norepinephrine, indoleamine, substance P and neurotensin fibres and the leptomeningal indoleamine axons: their role in vasomotor activity and local alterations of brain blood composition. In: Neurogenic Control of the Brain Circulation, eds., C. Owman and L. Edvinsson, (Pergamon Press, Oxford), 39–46

    Google Scholar 

  256. Owman, C., Hanko, J., Hardebo, J.E. and Kahrstrom, J. (1986). Neuropeptides and classical autonomic transmitters in the cardiovascular system: existence, coexistence, action, interaction. In: Neural Regulation of Brain Circulation, eds., C. Owman and J.E. Hardebo, (Elsevier Science Publishers, B.V. (Biomedical division) Amsterdam), 299–331

    Google Scholar 

  257. Hanko, J., Hardebo, J.E. and Owman, C. (1981). In: Cerebral Microcirculation and Metabolism, eds., J. Cervos-Navarro and E. Fritschka, (Raven Press, New York), 157–161

    Google Scholar 

  258. Banks, W.A. and Kastin, A.J. (1988). Peptides and the blood-brain barrier. In: Peptides and Amino Acid Transport Mechanisms in the Central Nervous System, eds., Lj. Rakic, D.J. Begley, H. Davson and B.V. Zlokovic, (Macmillan, London), 21–32

    Google Scholar 

  259. Edvinsson, L., Fahrenburg, J., Hanko, J., McCulloch, J., Owman, C. and Uddman, R. (1981). Vasoactive intestinal polypeptide and effects on cerebral blood flow and metabolism. In: Cerebral Blood Flow and Metabolism, eds., J. Cervos-Navarro and E. Fritschka, (Raven Press, New York), 147–155

    Google Scholar 

  260. McCulloch, J. and Edvinsson, L. (1980). Cerebral circulatory and metabolic effects of vasoactive intestinal polypeptide. Am. J. Physiol., 238, H449–H456

    PubMed  CAS  Google Scholar 

  261. Haffman, S.J., Heilgers, J., Dzoljich, R. and Saxera, P.R. (1986). Regional cerebral blood flow during enkephalin-induced seizures in the rat. Neuropharmacology, 25, 361–365

    Google Scholar 

  262. Davson, H. and Segal, M.B. (1970). The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid. J. Physiol., 209, 131–153

    PubMed  CAS  Google Scholar 

  263. Rap, Z.M., Kozniewska, E. and Skolasinska, K. (1980). Effect of vasopressin on cerebral blood flow and cerebrospinal fluid outflow. In: Pathophysiology and Pharmacotherapy of Cerebrovascular Disorders, eds., E. Betz, J. Grote, D. Hauser, (Verlag G. Witzstrock, Köln), 12–14

    Google Scholar 

  264. Rap, Z.M. (1981). Inhibitory effect of antidiuretic hormone on outflow of the cerebrospinal fluid in vasogenic brain edema induced by cold lesion. In: Cerebral Microcirculation and Metabolism, eds., J. Cervos-Navarro and E. Fritschke, (Raven Press, New York), 171–175

    Google Scholar 

  265. Lindvale, M., Alumets, J., Edvinsson, L., Fahrenkrug, J., Hakanson, R., Hanko, J., Owman, C., Schaffalitzky de Muckadell, O.B. and Sundler, F. (1978). Peptidergic (VIP) nerves in the mammalian choroid plexus. Neurosci. Lett., 9, 77–82

    Google Scholar 

  266. Zlokovic, B.V., Segal, M.B., Davson, H. and Jankov, R.M. (1988). Passage of delta-sleep-inducing peptide (DSIP) across the blood-cerebrospinal fluid barrier. Peptides, 9, 533–538

    PubMed  CAS  Google Scholar 

  267. Landgraf, R., Hess, J. and Hartmann, E. (1977). Der Einfluss von Ocytocin auf die regionale 3H Orotsaure-Aufnahme durch das Rattengehirn. Endokrinologie, 70, 45–52

    PubMed  CAS  Google Scholar 

  268. Landgraf, R., Hess, J. and Ermisch, A. (1978). The influence of vasopressin on the regional uptake of [3H]orotic acid by rat brain. Acta Biol. Med. Ger., 37, 655–658

    PubMed  CAS  Google Scholar 

  269. Ermisch, A., Landgraf, R. and Neumeister, D. (1980). Blood-brain barrier permeability and vasopressin. Proc. Int. Union Physiol. Sci., 14, 399

    Google Scholar 

  270. Brust, P. and Ermisch, A. (1984). Alteration of l-[3H]leucine transport across the blood-brain barrier (BBB) elicited by arginine vasopressin (AVP). In: Regulation of Transmitter Function: Basic and Clinical Aspects. Proc. Fifth Meeting Eur. Soc. Neurochem., eds., K. Magyar and E.S. Vizi, Budapest, Akademiai Kiado, 47

    Google Scholar 

  271. Raichle, M.E. and Grubb, R.I. (1978). Regulation of brain water permeability by centrally-released vasopressin. Brain Res., 143, 191–194

    PubMed  CAS  Google Scholar 

  272. Raichle, M.E. (1981). Hypothesis: a central neuroendocrine system regulates brain ion homeostasis and volume. In: Neurosecretion and Brain Peptides, eds., J.B. Martin, S. Reichlin and K.L. Bick, (Raven Press, New York), 329–336

    Google Scholar 

  273. Barry, D.I., Paulson, O.B. and Hertz, M.M. (1980). The blood-brain barrier: an overview with special reference to insulin effect on glucose transport. Acta Neurol. Scand., 778, 147–156

    Google Scholar 

  274. Hertz, M.M., Paulson, O.B., Barry, D.I., Christiansen, J.S. and Svendsen, P.A. (1981). Insulin increases glucose transfer across the blood-brain barrier in man. J. Clin. Invest, 67, 597–604

    PubMed  CAS  Google Scholar 

  275. Goldman, H. and Murphy, S. (1981). An analog of ACTH/MSH ORG-2766, reduces permeability of the blood-brain barrier. Pharmacol. Biochem. Behav., 14, 845–848

    PubMed  CAS  Google Scholar 

  276. Crone, C. (1986). The blood-brain barrier: a modified tight epithelium. In: The Blood-Brain Barrier in Health and Disease, eds., A J. Suckling, M.G. Rumsby and M.W.B. Bradbury, (Ellis Harwood, Chichester, England), 17–40

    Google Scholar 

  277. Joó, F. (1986). New aspects to the function of the cerebral endothelium. Nature (London), 321, 197–198

    Google Scholar 

  278. Joó, F. (1988). Cyclic nucleotide-mediated regulation of albumin transport in brain microvessels. In: Peptide and Amino Acid Transport in the Central Nervous System, eds., Lj. Rakic, D.J. Begley, H. Davson and B.V. Zlokovic, (Macmillan), 121–131

    Google Scholar 

  279. Pardridge, W.M., Yang, J. and Eisenberg, J. (1985). Blood-brain barrier protein phosphorylation and dephosphorylation. J. Neurochem., 45, 1141–1147

    PubMed  CAS  Google Scholar 

  280. Banks, W.A. and Kastin, A.J. (1986). Modulation of the carrier mediated transport of Tyr-MIF-1 across the blood-brain barrier by essential amino acids. J. Pharm. Exp. Therap., 239, 668–672

    CAS  Google Scholar 

  281. Stewart, P.A. and Wiley, M.J. (1981). Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev. Biol., 84,183–192

    PubMed  CAS  Google Scholar 

  282. Pardridge, W.M., Yang, J., Eisenberg, J. and Mietus, L.J. (1986). Antibodies to blood-brain barrier bind selectively to brain capillary endothelial lateral membranes and to 46K protein. J. Cereb. Blood Flow Metab., 6, 203–211

    PubMed  CAS  Google Scholar 

  283. Pardridge, W.M. (1986). Mechanisms of neuropeptide interaction with the blood-brain barrier. Ann. New York Acad. Sci., 481, 231–249

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Segal, M.B., Zlokovic, B.V. (1990). The role of peptides in the brain. In: The Blood-Brain Barrier, Amino Acids and Peptides. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2229-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2229-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7500-8

  • Online ISBN: 978-94-009-2229-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics