Skip to main content

Abstract

Amino acids are the structural element of all protein, so their entry from blood into brain is essential for brain growth and metabolism. However, these molecules can have an individual role as powerful neurotransmitters and their level in the brain ISF must be carefully regulated. This homeostasis has several possible sites for control, the entry step from the blood, the uptake and loss from the neurons and glia and the various drainage processes, either by diffusion into the CSF or back across the blood-brain barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradbury, M.W.B. (1979). The Concept of the Blood-Brain Barrier. (Wiley, Chichester)

    Google Scholar 

  2. Kamin, H. and Handler, P. (1951). The metabolism of parenterally administered amino acids II. Urea synthesis. J. Biol. Chem., 188, 193–205

    PubMed  CAS  Google Scholar 

  3. Chirigos, M.A., Greengard, P. and Udenfriend, S. (1960). Uptake of tyrosine by rat brain in vivo. J. Biol. Chem., 235, 2075–2079

    PubMed  CAS  Google Scholar 

  4. Udenfriend, S. (1961). Phenylketonuria. Am. J. Clin. Nutrit., 9, 691–694

    PubMed  CAS  Google Scholar 

  5. Guroff, G. and Udenfriend, S. (1962). Studies on aromatic amino acid uptake by rat brain in vivo. J. Biol. Chem., 237, 803–806

    PubMed  CAS  Google Scholar 

  6. Lajtha, A. and Toth, J. (1961). Uptake and transport of amino acids by the brain. J. Neurochem., 8, 216–225

    Article  PubMed  CAS  Google Scholar 

  7. Chinard, F.P., Vosburgh, G J. and Enns, T. (1955). Transcapillary exchange of water and of other substances in certain organs of the dog. Am. J. Physiol., 183, 221–234

    PubMed  CAS  Google Scholar 

  8. Crone, C. (1961). Gu diffusionen of nogle organisk non-elektrolyter fra clod til hjezne-vaeu. (Munksgaard, Copenhagen)

    Google Scholar 

  9. Yudilevich, D.L. and De Rose, N. (1971). Blood-brain transfer of glucose and other molecules by rapid indicator dilution. Am. J. Physiol., 220, 841–846

    PubMed  CAS  Google Scholar 

  10. Yudelivich, D.L., De Rose, N. and Sepulveda, F.V. (1972). Facilitated transport of amino acids through the blood-brain barrier of the dog studied in a single capillary circulation. Brain Res, 44, 569–578

    Article  Google Scholar 

  11. Yudilevich, D.KL. and Sepulveda, F.V. (1976). The specificity of amino acid and sugar carriers in the capillaries of the dog brain studied in vivo by rapid indicator dilution. In Transport Phenomena in the Nervous System, eds., G. Levi, L. Battistin and A. Lajtha, A. (Plenum, New York), pp. 77–85

    Google Scholar 

  12. Oldendorf, W.H. and Szabo, J. (1976). Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am. J. Physiol., 230, 94–98

    PubMed  CAS  Google Scholar 

  13. Oldendorf, W.H. (1981). Clearance of radio labelled substances by brain after arterial injection using a diffusible internal standard. In eds., N. Marlis and R. Rodright Research Methods in Neurobiochemistry, Vol. 5, (Plenum, New York), pp. 91–112

    Google Scholar 

  14. Christensen, H.N. (1969). Some special kinetic problems of transport. Adv. Enzymol., 32, 1–31

    PubMed  CAS  Google Scholar 

  15. Christensen, H.N. and Kilberg, M.S. (1987). Amino acid transport across the plasma membrane: role of regulation in interorgan flow. In: Amino Acid Transport in Animal Cells. eds. D.L. Yudilevich and C.A.R. Boyd (MUP, Manchester)

    Google Scholar 

  16. Oldendorf, W.H., Crane, P.D., Brown, L.D., Wade, L.A. and Diamond, J.N. (1983). Blood brain barrier transport of basic amino acids is selectivity inhibited by low pH. J. Neurochem., 40, 797–800

    Article  PubMed  CAS  Google Scholar 

  17. Pardridge, W.M. and Mietus, L.J. (1982). Kinetics of neutral amino acid transport through the blood-brain barrier of the newborn rabbit. J. Neurochem., 38, 955–962

    Article  PubMed  CAS  Google Scholar 

  18. Wade, L.A. and Brady, H.M. (1981). Cysteine and cystine transport at the blood-brain barrier. J. Neurochem., 37, 730–734

    Article  PubMed  CAS  Google Scholar 

  19. Betz, A.L., Gilboe, D.D. and Drewes, L.R. (1975). Kinetics of unidirectional leucine transport into brain: effects of isoleucine, valine and anoxia. Am. J. Physiol., 228, 895–902

    PubMed  CAS  Google Scholar 

  20. Baños, G., Daniel, P.M. and Pratt, O.E. (1974). Saturation of shared mechanism which transports L-arginine and L-lysine into the brain of the living rat. J. Physiol., 236, 29–41

    PubMed  Google Scholar 

  21. Bradbury, M.W., Deane, R. and Rosenberg, G. (1984). Regional blood flow, EEG and electrolytes in mouse brain perfused with perfluorochemical, FC43. J. Physiol., 355, 31

    Google Scholar 

  22. Takasato, Y., Rapoport, S.I. and Smith, Q.R. (1984). An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol., 247, H484-H493

    PubMed  CAS  Google Scholar 

  23. Zlokovic, B.V., Begley, D.J., Duricic, B.M. and Mitrovic, D.M. (1986). Measurement of solute transport across the blood-brain barrier in the perfused guinea-pig brain, method and application to N-methyl-aminoisobutyric acid. J. Neurochem., 46, 1444–1451

    Article  PubMed  CAS  Google Scholar 

  24. Davson, H., Welch, K. and Segal, M.B. (1987). The Physiology and Pathology of the Cerebrospinal Fluid. (Churchill Livingstone, Edinburgh)

    Google Scholar 

  25. Joó, F. (1985). The blood-brain barrier in vitro: ten years of research on microvessels isolated from the brain. Neurochem. Int., 7, 1–25

    Article  PubMed  Google Scholar 

  26. Pardridge, W.M., Landaw, E.M., Miller, L.P., Brown, L.D. and Oldendorf, W.H. (1985). Carotid artery injection technique: bounds for bolus mixing by plasma and by brain. J. Cereb. Blood Flow Metab., 5, 576–583

    Article  PubMed  CAS  Google Scholar 

  27. Sage, J.I. and Duffy, T.E. (1979). Pentobarbital anaesthesia: influence on amino acid transport across the blood-brain barrier. J. Neurochem., 33, 963–965

    Article  PubMed  CAS  Google Scholar 

  28. Hawkins, R.A., Mans, A.M. and Bieuyck, J.F. (1982). Amino acid supply to individual cerebral structures in awake and anaesthetized rats. Am. J. Physiol., 242, E1–E11

    PubMed  CAS  Google Scholar 

  29. Miller, L.P., Pardridge, W.M., Brown, L.D. and Oldendorf, W.H. (1985). Kinetic constants for blood-brain barrier amino acid transport in conscious rats. J. Neurochem., 45, 1427–1432

    Article  PubMed  CAS  Google Scholar 

  30. Smith, Q.R., Takasato, Y., Sweeney, D.J. and Rapoport, S.I. (1985). Regional cerebro-vascular transport of leucine as measured by the in situ brain perfusion technique. J. Cerebr. Blood Flow Metab., 5, 300–311

    Article  CAS  Google Scholar 

  31. Momma, S., Aoyagi, M., Rapoport, S.I. and Smith, Q.R. (1987). Phenylalanine transport across the blood-brain barrier as studied with the in situ brain perfusion technique. J. Neurochem., 48, 1291–1300

    Article  PubMed  CAS  Google Scholar 

  32. Smith, Q.R., Momma, S., Aoyagi, M. and Rapoport, S.I. (1987). Kinetics of neutral amino acid transport across the blood-brain barrier. J. Neurochem., 49, 1651–1658

    Article  PubMed  CAS  Google Scholar 

  33. Fernstrom, J.D. and Wurtman, R.J. (1972). Brain serotonin content: physiological regulation by plasma neutral amino acids. Science, 178, 414–416

    Article  PubMed  CAS  Google Scholar 

  34. Pardridge, W.M. and Choi, T.B. (1986). Neutral amino acid transport at the human blood-brain barrier. Fed. Proc., 45, 2073–2078

    PubMed  CAS  Google Scholar 

  35. Huet, P.-M., Pomier-Layrargues, G., Duguay, L. and Du Souich, P. (1981). Blood-brain transport of tryptophan and phenylalanine; effect of porto-caval shunt in dogs. Am. J. Physiol., 241, G163–169

    PubMed  CAS  Google Scholar 

  36. Betz, A.L. and Goldstein, G.W. (1978). Polarity of the blood- brain barrier: neutral amino acid transport into isolated brain capillaries. Science, 202, 225–226

    Article  PubMed  CAS  Google Scholar 

  37. Audus, K.L. and Borchardt, R.T. (1986). Characteristics of an in vitro blood-brain barrier model system for studying drug transport and metabolism. Pharm. Res., 3, 81–37

    Article  CAS  Google Scholar 

  38. Cardelli-Cangiano, P., Fiori, A., Cangiano, C., Barberini, F., Allegra, P., Peresempio, V. and Strom, R. (1987). Isolated brain microvessels as in vitro equivalents of the blood-brain barrier: selective removal by collagenase of the “A”-system of neutral amino acid transport. J. Neurochem., 49, 1667–1675

    Article  PubMed  CAS  Google Scholar 

  39. Bradbury, M.W. (1985). Critique. In: The blood-brain barrier in vitro: ten years of research in microvessels isolated from the brain. Neurochem. Int., 7, 27–28

    Google Scholar 

  40. Cangiano, C., Cardelli-Cangiano, P., James, J.H., Rossi-Fanelli, F., Patrizi, M.A., Brackett, K.A., Strom, R. and Fischer, J.E. (1983). Brain microvessels take up large neutral amino acids in exchange for glutamine: cooperative role of Na+-dependent and Na+-independent systems. J. Biol. Chem., 258, 8949–8954

    PubMed  CAS  Google Scholar 

  41. Betz, A.L. and Goldstein, G.W. (1986). Specialized properties and solute transport in brain capillaries. Ann. Rev. Physiol., 48, 241–250

    Article  CAS  Google Scholar 

  42. Ussing, H.H. and Zerahn, K. (1951). Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand., 23, 110–127

    Article  PubMed  CAS  Google Scholar 

  43. Audus, K.L. and Borchardt, R.T. (1986). Characteristics of the large neutral amino acid transport system of bovine brain microvessel endothelial cell monolayers. J. Neurochem., 47, 484–488

    Article  PubMed  CAS  Google Scholar 

  44. Bowman, P.D., Ennes, S.R., Rarey, K.E., Betz, A.L. and Goldstein, G.W. (1983). Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann. Neurol., 14, 396–402

    Article  PubMed  CAS  Google Scholar 

  45. Cancilla, P.A. and De Bault, L.E. (1983). Neutral amino acid transport properties of cerebral endothelial cells in vitro. J. Neuropath. Exp. Neurol., 42, 191–189

    Article  PubMed  CAS  Google Scholar 

  46. Beck, D.W., Vintners, H.V., Hart, M.N. and Cancilla, P.A. (1984). Glial cells influence polarity of the blood-brain barrier. J. Neuropath. Exp. Neurol., 43, 219–224

    Article  PubMed  CAS  Google Scholar 

  47. Schreiber, G. Department of Biochemistry, Melbourne University, Australia. Personal communication

    Google Scholar 

  48. McIlwain, H. and Bachelard, H.S. (1985). Biochemistry of the Central Nervous System. (Churchill Livingstone, Edinburgh), pp. 154–201

    Google Scholar 

  49. McIlwain, H. (1975). Practical Neurochemistry. (Churchill Livingstone, Edinburgh)

    Google Scholar 

  50. Sershen, H. and Lajtha, A. (1979). Inhibition pattern by analysis indicates the presence of ten or more transport systems for amino acids in brain cells. J. Neurochem., 32, 719–726

    Article  PubMed  CAS  Google Scholar 

  51. Cserr, H.F., Cooper, D.N. and Milhorat, T.H. (1977). Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp. Eye Res., 25 (suppl)., 461–473

    Article  PubMed  Google Scholar 

  52. Bito, L.Z. and Davson, H. (1966). Local variations in cerebrospinal fluid composition and its relationship to the composition of the extracellular fluid of the cortex. Exp. Neurol., 14, 264–280

    Article  PubMed  CAS  Google Scholar 

  53. Snodgrass, S.R., Cutler, R.W.P., Kang, E.S. and Lorenzo, A.V. (1969). Transport of neutral amino acids from the feline CSF. Am. J. Physiol., 217, 974–980

    PubMed  CAS  Google Scholar 

  54. Lorenzo, A.V. (1977). Factors governing the composition of the cerebrospinal fluid. Exp. Eye Res., 25 (suppl)., 205–228

    Article  PubMed  CAS  Google Scholar 

  55. Davson, H., Hollingsworth, J.G., Carey, M.B. and Fenstermacher, J.D. (1982). Ventricu-lo-cisternal perfusion of twelve amino acids in the rabbit. J. Neurobiol., 13, 293–318

    Article  PubMed  CAS  Google Scholar 

  56. Segal, M.B. and Pollay, M. (1977). The secretion of cerebrospinal fluid. Exp. Eye Res., 25 (suppl)., 127–148

    Article  PubMed  CAS  Google Scholar 

  57. Deane, R. and Segal, M.B. (1985). The transport of sugars across the perfused choroid plexus of the sheep. J. Physiol., 362, 245–260

    PubMed  CAS  Google Scholar 

  58. Lorenzo, A.V. (1974). Amino acid transport mechanisms of the cerebrospinal fluid. Fed. Proc., 33, 2079–2085

    PubMed  CAS  Google Scholar 

  59. Lorenzo, A.V. and Snodgrass, S.R. (1972). Leucine transport from the ventricles and the cranial subarachnoid space in the cat, J. Neurochem., 19, 1287–1298

    Article  PubMed  CAS  Google Scholar 

  60. Wright, E.M. (1972). Accumulation and transport of amino acids by the frog choroid plexus. Brain Res., 44, 207–219

    Article  PubMed  CAS  Google Scholar 

  61. Wright, E.M. (1974). Active transport of glycine across the frog arachnoid membrane. Brain Res., 76, 354–358

    Article  PubMed  CAS  Google Scholar 

  62. Daniel, P.M., Pratt, O.E. and Wilson, P.A. (1977). The transport of L-leucine into brain of the rat in vivo: saturable and non saturable components of influx. Proc. R. Soc. B., 196, 333–346

    Article  CAS  Google Scholar 

  63. Yudilevich, D.L., Sepulveda, F.V., Bustamente, J.C. and Mann, G.E. (1979). A comparison of amino acid transport and ouabain binding in the brain endothelium studied in vivo by rapid paired tracer dilution. J. Neurol Trans., 10, 15–27

    Google Scholar 

  64. Pardridge, W.M. and Oldendorf, W.H. (1975). Kinetics of blood-brain barrier transport of amino acids. Biochim. Biophys. Acta, 401, 128–136

    Article  PubMed  CAS  Google Scholar 

  65. Oldendorf, W.H. (1971). The brain uptake of radiolabeled amino acids, amines and hexoses after intra-arterial injection. Am. J. Physiol., 221, 1629–1639

    PubMed  CAS  Google Scholar 

  66. Pardridge, W.M. (1983). Brain metabolism: a perspective from the blood-barrier. Physiol. Rev., 63, 1481–1583

    PubMed  CAS  Google Scholar 

  67. Pratt, O.E. (1985). Continuous injection method for the measurement of flux across the blood-brain barrier. The steady state, initial rate method. In: Research Methods in Neurochemistry, eds., Marks, N. and Rodnight, R. (Plenum Press, New York), Vol. 6, pp. 117–150

    Google Scholar 

  68. Preston, J.E., Segal, M.B., Walley, G.J. and Zlokovic, B.V. (1989). Neutral amino acid uptake by the isolated perfused sheep charoid plexus. J. Physiol., 408, 31–43

    PubMed  CAS  Google Scholar 

  69. Segal, M.B., Preston, J.E., Collis, C.S. and Zlokovic, B.V. (1990). Kinetics and Na-inde-pendence of amino acid uptake by the blood-side of the perfused choroid plexus of the sheep. Am. J. Physiol. (in press)

    Google Scholar 

  70. Preston, J.E. and Segal, M.B. (1990). The uptake of anionic and cationic amino acids by the isolated perfused sheep choroid plexus, (in press)

    Google Scholar 

  71. Baños, G., Daniel, P.M., Moorhouse, S.R. and Pratt, O.E. (1973). The influx of amino acids into the brain of the rat in vivo: the essential compared with some non-essential. Proc. R. Soc. Lond. B., 183, 59–70

    Article  PubMed  Google Scholar 

  72. Preston, J.E. Ph.D. Thesis, London University, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Segal, M.B., Zlokovic, B.V. (1990). Amino acids and the blood-brain barrier. In: The Blood-Brain Barrier, Amino Acids and Peptides. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2229-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2229-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7500-8

  • Online ISBN: 978-94-009-2229-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics