Skip to main content

Growth, carbon allocation and cost of plant tissues

  • Chapter
Plant Physiological Ecology

Abstract

The capacity to change in size, mass, form and/or number is an essential feature of life, and the term ‘growth’ can refer to any or all of these types of change. In this chapter, we focus on methods to analyze one type of growth — the increase in dry mass of plants or plant parts through time. We consider components of growth that occur over time periods ranging from minutes to years, and at structural levels ranging from tissues to the whole plant. Our central theme is that a variety of processes at different temporal and structural scales contribute to plant growth and success. In some studies, the control of photosynthate partitioning may be of critical interest in understanding growth, while in others, it may be the relative costs of twigs versus leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamson, W.G. and Caswell, H. (1982) On the comparative allocation of biomass, energy, and nutrients in plants. Ecology, 63, 982–91.

    Article  Google Scholar 

  • Allen, S.E. (ed.) (1974) Chemical Analysis of Ecological Materials, John Wiley and Sons, New York.

    Google Scholar 

  • Azcon-Bieto, J. and Osmond, C.B. (1983) Relationship between photosynthesis and respiration. The effect of the carbohydrate status on the rate of CO2 production by respiration in darkened and illuminated wheat leaves. Plant Physiol, 71, 574–81.

    Article  PubMed  CAS  Google Scholar 

  • Barker, J.E., Mott, R.A. and Thomas, W.C. (1955) Studies in bomb calorimetry. IV. Corrections. Fuel, 34, 303–16.

    CAS  Google Scholar 

  • Bazzaz, F.A. and Harper, J.L. (1977) Demographic analysis of the growth of Linumusitatissimum. New Phytol., 78, 193–207.

    Article  Google Scholar 

  • Beadle, C.L. (1985) Plant growth analysis. In Techniques in Bioproductivity and Photosynthesis, 2nd edn (eds J. Coombs, D.O. Hall, S.P. Long and J.M.O. Scurlock), Pergamon Press, Oxford, pp. 20–5.

    Google Scholar 

  • Benjamin, L.R. and Wren, M.J. (1978) Root development and source-sink relationships in carrot, Daucus carota L. J. Exp. Bot., 29, 425–33.

    Article  Google Scholar 

  • Biscoe, P.V. and Jaggard, K.W. (1985) Measuring plant growth and structure. In Instrumentation for Environmental Physiology (eds B. Marshall and F.I. Woodward), Cambridge University Press, Cambridge, pp. 215–28.

    Google Scholar 

  • Blackman, V.H. (1919) The compound interest law and plant growth. Ann. Bot., 33, 353–60.

    Google Scholar 

  • Bloom, A.J., Chapin, F.S. III and Mooney, H.A. (1985) Resource limitation in plants — an economic analogy. Ann. Rev. Ecol. Syst., 16, 363–92.

    Google Scholar 

  • Brand, D.G., Weetman, G.F. and Rehsler, P. (1987) Growth analysis of perennial plants: the relative production rate and its yield components. Ann. Bot., 59,45–53.

    Google Scholar 

  • Briggs, G.E., Kidd, R. and West, C. (1920a) Quantitative analysis of plant growth. Ann. Appl. Biol., 7, 103–23.

    Article  Google Scholar 

  • Briggs, G.E., Kidd, R. and West, C. (1920b) Quantitative analysis of plant growth. Ann. Appl. Biol., 7, 202–23.

    Article  Google Scholar 

  • Brooks, A. and Farquhar, G.D. (1985) Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Estimates from gas-exchange measurements on spinach. Planta, 165, 397–108.

    Article  CAS  Google Scholar 

  • Cataldo, D.A., Schrader, L.E. and Youngs, V.L. (1974) Analysis by digestion and colorimetric assay of total nitrogen in plant tissues high in nitrate. Crop Sci., 14, 854–6.

    Article  CAS  Google Scholar 

  • Chapin, III, F.S. (1980) The mineral nutrition of wild plants. Annu. Rev. Ecol System., 11, 233–60.

    Article  CAS  Google Scholar 

  • Chapman, H.D. and Pratt, P.F. (1961) Methods of Analysis for Soils, Plants and Waters, Division of Agricultural Sciences, University of California, Berkeley.

    Google Scholar 

  • Chapman, J.M. and Ayrey, G. (1981) The Use of Radioactive Isotopes in the Life Sciences, George Allen and Unwin, London, 148 pp.

    Google Scholar 

  • Charles-Edwards, D.A. and Fisher, M.J. (1980) A physiological approach to the analysis of crop growth data. I. Theoretical considerations. Ann. Bot., 46, 413–23.

    Google Scholar 

  • Coombe, E.E. (1960) An analysis of the growth of Trema guineensis. J. Ecol., 48, 219–31.

    Google Scholar 

  • Chung, H.H. and Barnes, R.L. (1977) Photosyn-thate allocation in Pinus taeda. I. Substrate requirements of synthesis of shoot biomass. Can. J. For. Res., 7, 106–11.

    Article  CAS  Google Scholar 

  • Coughtrey, P.J., Nancarrow, D.J. and Jackson, D. (1986) Extraction of carbon-14 from biological samples by wet oxidation. Commun. Soil Sci. Plant Anal., 17, 393–9.

    Article  CAS  Google Scholar 

  • Cox, J.D. and Pilcher, G. (1970) Thermochemistry of Organic and Organometallic Compounds, Academic Press, London.

    Google Scholar 

  • DeVisser, R. and Lambers, H. (1983) Growth and the efficiency of root respiration of Pisum sativum L. as dependent on the source of nitrogen. Physiol. Plant., 58, 533–43.

    Article  CAS  Google Scholar 

  • de Wit, C.T. (1978) Simulation of Assimilation, Respiration and Transpiration of Crops, John Wiley and Sons, New York.

    Google Scholar 

  • Dickson, R.R. (1979) Analytical procedures for the sequential extraction of 14C-labelled constituents from leaves, bark and wood of cottonwood plants. Physiol. Plant., 45, 480–8.

    Article  CAS  Google Scholar 

  • Evans, G.C. (1972) The Quantitative Analysis of Plant Growth, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Fisher, M.J., Charles-Edwards, C.A. and Campbell, N.A. (1980) A physiological approach to the analysis of crop growth data. II Growth of Stylosanthes humilis. Ann. Bot., 46, 425–34.

    Google Scholar 

  • Gaines, T.P. (1973) Automated determination of reducing sugars, total sugars, and starch in plant tissue from one weighed sample. J. Association of Official Analytical Chemists, 56, 1419–24.

    CAS  Google Scholar 

  • Glenn, HJ. (1982) Preparation of samples for liquid scintillation and gamma counting. In Biologic Applications of Radiotracers (ed. H.J. Glenn), CRC Press, Ohio, pp. 151–69.

    Google Scholar 

  • Golley, F.B. (1961) Energy values of ecological materials. Ecology, 42, 581–4.

    Article  Google Scholar 

  • Grier, C.C. and Waring, R.H. (1974) Conifer foliage mass related to sapwood area. For. Sci., 20, 205–6.

    Google Scholar 

  • Grime, J.P. (1966) Shade avoidance and shade tolerance in flowering plants. In Light as an Ecological Factor (eds G.C. Evans, R. Bainbridge and O. Rackham), Blackwell Press, London, pp. 187–207.

    Google Scholar 

  • Gross, K.L. (1981) Predictions of fate from rosette size in four “biennial” plant species: Verbascum thapsus, Oenothera biennis, Daucus carota, and Tragopogon dubius. Oecologia, 48, 209–13.

    Article  Google Scholar 

  • Hardwick, R.C. (1984) Some recent developments in growth analysis — a review. Ann. Bot., 54, 807–12.

    Google Scholar 

  • Harper, J.L. (1968) The regulation of numbers and mass in plant populations. In Population Biology and Evolution (ed. R.C. Lewontin), Syracuse University Press, Syracuse, New York, pp. 139–58.

    Google Scholar 

  • Heilmeier, H. and Whale, D.M. (1986) Partitioning of 14C labelled assimilates in Arcticum tomentosum. Ann. Bot., 57, 655–66.

    Google Scholar 

  • Hemminger, W. and Hohne, G. (1984) Calorimetry: Fundamentals and Practice, Verlag-Chemie, Weinheim.

    Google Scholar 

  • Hesketh, J.D., Baker, D.N. and Duncan, W.G. (1971) Simulation of growth and yield in cotton: respiration and the carbon balance. Crop Sci., 11, 394–8.

    Article  Google Scholar 

  • Hobbs, R.J. and Mooney, H.A. (1987) Leaf and shoot demography in Baccharis shrubs of different ages. Am. J. Bot., 74, 1111–15.

    Article  Google Scholar 

  • Hunt, R. (1978a) Demography versus plant growth analysis. New Phytol., 80, 269–72.

    Article  Google Scholar 

  • Hunt, R. (1978b) Plant Growth Analysis, Studies in Biology, no. 96, Edward Arnold, London.

    Google Scholar 

  • Hunt, R. (1979) Plant growth analysis: the rationale behind the use of the fitted mathematical function. Ann. Bot., 43, 245–9.

    Google Scholar 

  • Hunt, R. and Bazzaz, F.A. (1980) The biology of Ambrosia trifida L. V. Response to fertilizer, with growth analysis at the organismal and sub-organismal levels. New Phytol., 84, 113–21.

    Article  Google Scholar 

  • Hunt, R. and Parsons, I.T. (1974) A computer program for deriving growth functions in plant growth-analysis. J. Appl. Ecol., 11, 297–307.

    Article  Google Scholar 

  • Hunt, R., Warren Wilson, J., Hand, D.W. and Sweeney, D.G. (1984) Integrated analysis of growth and light interception in winter lettuce. I. Analytical methods and environmental influences. Ann. Bot., 54, 743–57.

    Google Scholar 

  • Hutchings, M.J. and Budd, C.S.J. (1981) Plant competition and its course through time. Bio-Science, 31, 640–5.

    Google Scholar 

  • Jarvis, P.G. (1985) Specific leaf weight equals 1.0 -always! Hort Science, 20, 812.

    Google Scholar 

  • Jolliffe, P.A. and Courtney, W.H. (1984) Plant growth analysis: additive and multiplicative components of growth. Ann. Bot., 54, 243–54.

    Google Scholar 

  • Jolliffe, P.A., Eaton, G.W. and Lovett Doust, J. (1982) Sequential analysis of plant growth. New Phytol., 92, 287–96.

    Article  Google Scholar 

  • Jow, W.M., Bullock, S.H. and Kummerow, J. (1980) Leaf turnover rates of Adenostoma fasciculatum (Rosaceae). Am. J. Bot., 67, 256–61.

    Article  Google Scholar 

  • Kharasch, M.S. (1929) Heats of combustion of organic compounds. J. Res. Bur. Stand., 2, 359–430.

    CAS  Google Scholar 

  • Kharasch, M.S. and Sher, B. (1925) The electronic conception of valence and heats of combustion of organic compounds. J. Phys. Chem., 29, 625–58.

    Article  CAS  Google Scholar 

  • Kimura, M., Yokoi, Y. and Hogetsu, K. (1978) Quantitative relationships between growth and respiration. II. Evolution of constructive and maintenance respiration in growing Helianthus tuberosus leaves. Bot. Mag., 91, 43–56.

    Article  Google Scholar 

  • King, D. and Roughgarden, J. (1983) Energy allocation patterns of the California grassland annuals Plantago erecta and Clarkia rubicunda. Ecology, 64, 16–24.

    Article  Google Scholar 

  • Koch, K. and Hehl, G. (1975) Influence of different preparation and extraction methods on changes in the content of carbohydrates, amino acids and nitrate of plant fresh and dry matter. Z. Anal. Chem., 273, 203–8.

    Article  CAS  Google Scholar 

  • Květ, J., Ondok, J.P., Nečas, J. and Jarvis, P.G. (1971) Methods of growth analysis. In Plant Photosynthetic Production (eds Z. Šesták, J. Catsky and P.G. Jarvis), Junk, The Hague, pp. 343–91.

    Google Scholar 

  • LaFitte, H.R. (1985) Physiological investigations of nitrogen use efficiency in grain sorghum (Sorghum bicolor (L.) Moench), Ph.D. thesis. University of California, Davis.

    Google Scholar 

  • Lambers, H., Szaniawski, R.K. and de Visser, R. (1983) Respiration for growth, maintenance and ion uptake. An evaluation of concepts, methods, values and their significance. Physiol. Plant., 58, 556–63.

    Article  CAS  Google Scholar 

  • Ledig, F.T. (1974) Concepts of growth analysis. In Proceeding of the Third North American Forest Biology Workshop (eds C.P.P. Reid and G.H. Fechner), Colorado State University, Fort Collins, Colorado, pp. 166–82.

    Google Scholar 

  • Lefkovitch, L.P. (1965) The study of population growth in organisms grouped by stages. Biometrics, 21, 1–18.

    Article  Google Scholar 

  • Lewis, D.H. (ed.) (1984) Storage Carbohydrates in Vascular Plants. Distribution, Physiology, and Metabolism, Cambridge University Press, Cambridge.

    Google Scholar 

  • Lieth, H. (1975) Measurement of caloric values. In Primary Productivity of the Biosphere (eds H. Lieth and R. Whittaker), Springer-Verlag, New York.

    Google Scholar 

  • Magnuson, C.E., Fares, Y., Goeschl, J.D., Nelson, C.E., Strain, B.R., Jaeger, C.H. and Bilpuch, E.G. (1982) An integrated tracer kinetics system for studying carbon uptake and allocation in plants using continuously produced 11CO2. Radiat. Environ. Biophys., 21, 51–65.

    Article  CAS  Google Scholar 

  • Maillette, L. (1982) Needle demography and growth pattern of Corsican pine. Can. J. Bot., 60, 105–16.

    Article  Google Scholar 

  • McCrea, K.D., Abrahamson, W.G. and Weis, A.E. (1985) Goldenrod ball gall effects on Solidago altissima: 14C translocation and growth. Ecology, 66, 1902–7.

    Article  Google Scholar 

  • McCree, K.J. (1970) An equation for the rate of respiration of white clover plants grown under controlled conditions. In Prediction and Measurements of Photosynthetic Productivity (ed. I. Setlik), Proceeding of IBP/PP Technical Meeting, Trebon 1969, PUDOC, Wageningen.

    Google Scholar 

  • McCree, K.J. (1982) Maintenance requirements of white clover at high and low growth rates. Crop Sci., 22, 345–51.

    Article  Google Scholar 

  • McDermitt, D.K. and Loomis, R.S. (1981) Elemental composition of biomass and its relation to energy content, growth efficiency and growth yield. Ann. Bot., 48, 275–90.

    CAS  Google Scholar 

  • McGraw, J.B. and Antonovics, J. (1983) Experimental ecology of Dry as octopetala ecotypes. II. A demographic model of growth, branching and fecundity. J. Ecol., 71, 899–912.

    Article  Google Scholar 

  • McGraw, J.B. and Wulff, R.D. (1983) The study of plant growth: a link between the physiological ecology and population biology of plants. J. Theoret. Biol., 103, 21–8.

    Article  Google Scholar 

  • Merino, J., Field, C. and Mooney, H.A. (1982) Construction and maintenance costs of Mediterranean-climate evergreen and deciduous leaves. I. Growth and CO2 exchange analysis. Oecologia, 53, 208–13.

    Article  Google Scholar 

  • Merino, J., Field, C. and Mooney, H.A. (1984) Construction and maintenance costs of Mediterranean-climate evergreen and deciduous leaves. II. Biochemical pathway analysis. Acta Oecol. Plant., 5, 211–23.

    CAS  Google Scholar 

  • Miller, P.C. and Stoner, W.A. (1979) Canopy structure and environmental interactions. In Topics in Plant Population Biology (eds O.T. Sobrig, S. Jain, G.B. Johnson and P.H. Raven), Columbia University Press, New York, pp. 428–58.

    Google Scholar 

  • Mooney, H.A. and Bartholomew, B. (1974) Comparative carbon balance and reproductive modes of two Californian Aesculus species. Bot. Gaz., 135, 306–13.

    Article  Google Scholar 

  • Mooney, H.A. and Billings, W.D. (1960) The annual carbohydrate cycle of alpine plants as related to growth. Am. J. Bot., 47, 594–8.

    Article  CAS  Google Scholar 

  • Mordacq, L., Mousseau, M. and Deleeno, E. (1986) A 13C method of estimation of carbon allocation to roots in a young chestnut coppice. Plant. Cell Environ., 9, 735–9.

    Article  CAS  Google Scholar 

  • Nicholls, A.O. and Calder, D.M. (1973) Comments on the use of regression analysis for the study of plant growth. New Phytol., 72, 571–81.

    Article  Google Scholar 

  • Ondok, J.P. and Květ, J. (1971) Indirect estimation of primary values used in growth analysis. In Plant Photosynthetic Production (eds Z. Sestk, J. Catsky and P.G. Jarvis), Junk, The Hague, pp. 392–411.

    Google Scholar 

  • Pace, G.M., MacKown, C.T. and Volk, R.J. (1982) Minimizing nitrate reduction during Kjeldahl digestion of plant tissue extracts and stem exudates. Plant Physiol., 69, 32–6.

    Article  PubMed  CAS  Google Scholar 

  • Paine, R.T. (1971) The measurement and application of the calorie to ecological problems. Ann. Rev. Ecol. System., 2, 145–64.

    Article  Google Scholar 

  • Pearcy, R.W. (1983) The light environment and growth of C3 and C4 tree species of the understory of a Hawaiian forest. Oecologia, 58, 19–25.

    Article  Google Scholar 

  • Pearen, J.R. and Hume, D.J. (1982) Non-destructive estimation of 14C in soybeans immediately after labelling. Crop Sci., 22, 669–71.

    Article  CAS  Google Scholar 

  • Peisker, M. and Apel, P. (1980) Dark respiration and the effect of oxygen on CO2 compensation concentration in wheat leaves. Zeitschr. Pflanzen-physiol., 100, 389–95.

    CAS  Google Scholar 

  • Penning de Vries, F.W.T. (1972) Respiration and growth. In Crop Processes in Controlled Environments (eds A.R. Rees, K.E. Cockshull, D.W. Hand and R.G. Hurd), Academic Press, London.

    Google Scholar 

  • Penning de Vries, F.W.T. (1975) The cost of maintenance processes in plant cells. Ann. Bot., 39, 77–92.

    CAS  Google Scholar 

  • Penning de Vries, F.W.T., Brunsting, A.H.M. and van Laar, H.H. (1974) Products, requirements and efficiency of biosynthesis: a quantitative approach. J. Theoret. Biol., 45, 339–77.

    Article  Google Scholar 

  • Phillipson, J. (1964) A miniature bomb calorimeter for small biological samples. Oikos, 15, 130–39.

    Article  Google Scholar 

  • Pirt, S.J. (1975) Principles of Microbe and Cell Cultivation, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Pitelka, L.F. and Ashmun, J.W. (1985) The physiology and ecology of connections between ramets in clonal plants. In The Population Biology and Evolution of Clonal Organisms (eds J. Jackson, L. Buss and R. Cook), Yale University Press, New Haven.

    Google Scholar 

  • Poorter, H. and Lewis, C. (1986). Testing differences in relative growth rate: A method avoiding curve fitting and pairing. Physiol Plant. 67, 223–6.

    Article  Google Scholar 

  • Porter, J.R. (1983) A modular approach to analysis of plant growth. II. Methods and results. New Phytol., 94, 191–200.

    Article  Google Scholar 

  • Promnitz, L.C. (1974) Sampling and statistical problems in growth analysis. In Proceeding of the Third North American Forest Biology Workshop (eds C.P.P. Reid and G.H. Fechner), Colorado State University, Fort Collins, Colorado, pp. 183–95.

    Google Scholar 

  • Radford, P.J. (1967) Growth analysis formulae-their use and abuse. Crop Sci., 7, 171–5.

    Article  Google Scholar 

  • Raguse, C.A. and Smith D. (1965) Carbohydrate content in alfalfa herbage as influenced by methods of drying. J. Agri. Pood Chem., 13, 306–9.

    Article  Google Scholar 

  • Recalcad, L.M., Basso, B., Albergoni, F.G. and Radice, M. (1982) On the determination of 14C-labelled photosynthesis products by liquid scintillation counting. Plant Sci. Lett., 27, 21–7.

    Article  Google Scholar 

  • Richards, F.J. (1959) A flexible growth function for empirical use. J. Exp. Bot., 10, 290–300.

    Article  Google Scholar 

  • Roberts, M.J., Long, S.P., Tieszen, L.L. and Beadle, C.L. (1985) Measurement of plant biomass and net primary production. In Techniques in Bioproductivity and Photosynthesis, 2nd edn (eds J. Coombs, D.O. Hall, S.P. Long and J.M.O. Scurlock), Pergamon Press, Oxford, pp. 1–25.

    Google Scholar 

  • Robinson, T. (1980) The Organic Constituents of Higher Plants, 4th edn, Cordus Press, North Amherst, MA.

    Google Scholar 

  • Rogers, A.W. (1979) Techniques of Autoradiography, 3rd edn, Elsevier, Amsterdam, 429 pp.

    Google Scholar 

  • Roughgarden, J. (1979) Theory of Population Genetics and Evolutionary Ecology, Macmillan, New York.

    Google Scholar 

  • Schroeder, L. A. (1977) Caloric equivalents of some plant and animal material: The importance of acid corrections and comparison of precision between the Gentry-Weigert micro and the Parr semi-micro bomb calorimeters. Oecologia, 28, 261–7.

    Google Scholar 

  • Schtze, M. (1939) Z. Anal. Chem., 118, 245–58.

    Article  Google Scholar 

  • Smith, D. (1969) Removing and Analyzing Total Nonstructural Carbohydrates from Plant Tissue, Research Division, College of Agricultural and Life Sciences, Madison, WI, Research Report 41, 11 pp.

    Google Scholar 

  • Smith, R.I.L. and Walton, D.W.H. (1975) A growth analysis technique for assessing habitat severity in tundra regions. Ann. Bot., 39, 831–43.

    Google Scholar 

  • Thornley, J.H.M. (1970) Respiration, growth and maintenance in plants. Nature, London, 227, 304–5.

    Article  CAS  Google Scholar 

  • Thornley, J.H.M. (1977) Growth, maintenance and respiration: a re-interpretation. Ann. Bot., 41, 1191–203.

    Google Scholar 

  • Tilman, D. (1988) Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Turner, M.D. and Rabinowitz, D. (1983) Factors affecting frequency distributions of plant mass: the absence of dominance and suppression in competing monocultures of Festuca paradoxa. Ecology, 64, 469–75.

    Article  Google Scholar 

  • Unterzaucher, J. (1940) Microanalytical determination of oxygen. Ber. Dtsch. Chem. Ges., 73B, 391–404.

    CAS  Google Scholar 

  • Veen, B.W. (1980) Energy cost of ion transport. In Genetic Engineering of Osmoregulation; Impact on Plant Productivity for Food, Chemicals and Energy (eds D.W. Rains, R.C. Valentine and A. Hollaender), Plenum Press, New York, pp. 187–95.

    Google Scholar 

  • Venus, J.S. and Causton, D.R. (1979) Plant growth analysis: the use of the Richards function as an alternative to polynomial exponentials. Ann. Bot., 43, 623–32.

    Google Scholar 

  • Vogelmann, T.C., Larson, P.R. and Dickson, R.E. (1982) Translocation pathways in the petioles and stem between source and sink leaves of Populus deltoides Batn. ex Marsh. Planta, 156, 345–58.

    Article  Google Scholar 

  • Wang, C.H., Willis, D.L. and Loveland, W.D. (1975) Radiotracer Methodology in the Biological, Environmental, and Physical Sciences, Prentice-Hall, New Jersey.

    Google Scholar 

  • Wann, M. and Raper, C.D. Jr (1979) A dynamic model for plant growth: adaptation for vegetative growth of soybeans. Crop Sci., 19, 461–7.

    Article  Google Scholar 

  • Wann, M., Raper, C.D. Jr, and Lucas, H.L. Jr (1978) A dynamic model for plant growth: simulation of dry matter accumulation for tobacco. Photosynthetica, 12, 121–36.

    Google Scholar 

  • Warembourg, F.R., Montange, D. and Bardin, R. (1982) The simultaneous use of 14CO2 and 15N2 labeling techniques to study the carbon and nitrogen economy of legumes grown under natural conditions. Physiol. Plant., 56, 46–55.

    Article  CAS  Google Scholar 

  • Warren Wilson, J. (1966) An analysis of plant growth and its control in arctic environments. Ann. Bot., 30, 393–402.

    Google Scholar 

  • Warren Wilson, J. (1981) Analysis of growth, photosynthesis and light interception for single plants and stands. Ann. Bot., 48, 507–12.

    Google Scholar 

  • Watson, D.J. (1958) The dependence of net assimilation rate on leaf area index. Ann. Bot., 22, 37–54.

    Google Scholar 

  • Watson, M.A. (1984) Developmental constraints: effect on population growth and patterns of resource allocation in a clonal plant. Am. Nat., 123, 411–26.

    Article  Google Scholar 

  • Weier, K.L., Wilson, J.R. and White, R.J. (1977) A semi-automated procedure for estimating total non-structural carbohydrates in grasses, and comparison with two other procedures. CSIRO Aust. Div. Trop. Crops Past. Tech. Pap. No. 20, Melbourne, Australia, 10 pp.

    Google Scholar 

  • Werner, P.A. (1975) Predictions of fate from rosette size in teasel. (Dipsacus fullonum L.). Oecologia, 20, 197–201.

    Article  Google Scholar 

  • White, J. (1979) The plant as a metapopulation. Annu. Rev. Ecol. System., 10, 109–45.

    Article  Google Scholar 

  • Williams, K. (1986) Estimating Carbon and Energy Costs of Plant Tissues, Ph.D. thesis, Stanford University, Stanford.

    Google Scholar 

  • Williams, K., Field, C.B. and Mooney, H.A. (1989) Relationships among leaf construction costs, leaf longevity and light environment in rainforest plants of the genus Piper. Am. Nat. (in press).

    Google Scholar 

  • Williams, K., Percival, F., Merino, J. and Mooney, H.A. (1987) Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant, Cell Environ., 10, 725–34.

    CAS  Google Scholar 

  • Williams, R.F. (1946) The physiology of plant growth with special reference to the concept of net assimilation rate. Ann. Bot., 10, 41–62.

    CAS  Google Scholar 

  • Williams, S. (ed.) (1984) Official Methods of Analysis of the Association of Official Analytical Chemists, Association of Official Analytical Chemists, Arlington, VA.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Chapman and Hall

About this chapter

Cite this chapter

Chiariello, N.R., Mooney, H.A., Williams, K. (1989). Growth, carbon allocation and cost of plant tissues. In: Pearcy, R.W., Ehleringer, J.R., Mooney, H.A., Rundel, P.W. (eds) Plant Physiological Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2221-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2221-1_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7496-4

  • Online ISBN: 978-94-009-2221-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics