Skip to main content

Photosynthesis: principles and field techniques

  • Chapter
Plant Physiological Ecology

Abstract

Among the people who do photosynthesis research at the leaf, plant or canopy level, the devices used to measure photosynthesis are usually referred to as gas-exchange systems or simply as ‘systems’. The concept that photosynthesis is measured with a system, rather than a single instrument, is an important place to start, for two reasons. First, the system concept emphasizes the fact that we have nothing like a discrete photosynthesis sensor. Photosynthesis is always a calculated parameter, determined from measurements of CO2 concentrations, gas flows and sometimes other parameters, depending on the measurement philosophy. Second, the system concept reminds us that gas-exchange systems typically measure more than just photosynthesis, for the reason that photosynthesis data are greatly enhanced by the simultaneous acquisition of other kinds of information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D.E., Verma, S.B., Clement, R.J., Baldocchi, D.D. and Matt, D.R. (1986) Turbulence spectra of CO2, water vapor, temperature and velocity over a deciduous forest. Agric. For. Meteor., 38, 81–99.

    Article  Google Scholar 

  • Atkinson, C.J. Winner, W.E. and Mooney, H.A. (1986) A field portable gas-exchange system for measuring carbon dioxide and water vapour exchange rates of leaves during fumigation with SO2. Plant Cell. Environ., 9, 711–19.

    Article  CAS  Google Scholar 

  • Baldocchi, D.D., Verma, S.B. and Anderson, D.E. (1987) Canopy photosynthesis and water-use efficiency in a deciduous forest. J. Appl. Ecol., 24, 251–60.

    Article  Google Scholar 

  • Ball, J.T. (1987) Calculations related to gas exchange. In Stomatal Function (eds E. Zeiger, G.D. Farquhar and I. Cowan), Stanford University Press, Stanford, pp. 445–76.

    Google Scholar 

  • Bazzaz, F.A. and Boyer, J.S. (1972) A compensating method for measuring carbon dioxide exchange, transpiration, and diffusive resistances of plants under controlled environmental conditions. Ecology, 53, 343–9.

    Article  CAS  Google Scholar 

  • Bingham, G.E. Coyne, P.I., Kennedy, R.B. and Jackson, W.L. (1980) Design and fabrication of a portable minicuvette system for measuring leaf photosynthesis and stomatal conductance under controlled conditions. Lawrence Livermore National Laboratory, Livermore CA, UCRL-52895.

    Google Scholar 

  • Björkman, O., Nobs, M., Berry, J., Mooney, H., Nicholson, F. and Catanzaro, B. (1973) Physiological adaptation to diverse environments: Approaches and facilities to study plant responses to contrasting thermal and water regimes. Carnegie Inst. Wash. Ybk., 72, 393–403.

    Google Scholar 

  • Blacklow, W.M. and Maybury, K.G. (1980) A battery-operated instrument for non-destructive measurements of photosynthesis and transpiration of ears and leaves of cereals using 14CO2 and a lithium chloride hygrometer. J. Exp. Bot., 31, 1119–29.

    Article  Google Scholar 

  • Bloom, A.J., Mooney, H.A., Björkman, O. and Berry, J.A. (1980) Materials and methods for carbon dioxide and water exchange analysis. Plant Cell Environ., 3, 371–6.

    Article  CAS  Google Scholar 

  • Bosian, G. (1955) Über die Vollautomatisierung der CO2-Assimilations-bestimmung und zur methodik des küvettenklemas. Planta, 45, 470–92.

    Article  CAS  Google Scholar 

  • Bosian, G. (1960) Zum Kuvettenklimaproblem: Beweisführung für die Nichtexistenz 2-gip-feliger Assimilationskurven bei Verwendung von Klimatisierten Küvetten. Flora, 149,167–88.

    Google Scholar 

  • Bosian, G. (1965) Control of conditions in the plant chamber: Fully automatic regulation of wind velocity, temperature and relative humidity to conform to microclimatic field conditions. In Methodology of Plant Eco-physiology (ed. F.E. Eckardt), UNESCO, Paris, pp. 233–8.

    Google Scholar 

  • Caemmerer, S., von and Farquhar, G.D. (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153, 376–87.

    Article  Google Scholar 

  • Caldwell, M.M., Dean, T.J., Novak, R.S., Dzurec, R.S. and Richards, J.H. (1983) Bunchgrass architecture, light interception, and water-use efficiency: Assessment by fiber optic point quadrats and gas exchange. Oecologia, 59, 178–84.

    Article  Google Scholar 

  • Calvin, M. and Benson, A.A. (1948) The path of carbon in photosynthesis. Science, 107, 476–80.

    Article  PubMed  CAS  Google Scholar 

  • Chazdon, R.L. and Pearcy, R.W. (1986) Photo-synthetic responses to light variation in rainforest species. I. Induction under constant and fluctuating light conditions. Oecologia, 69, 517–23.

    Article  Google Scholar 

  • Clegg, M.D., Sullivan, C.Y. and Eastin, J.D. (1978) A sensitive technique for the rapid measurement of carbon dioxide concentrations. Plant Physiol., 62, 924–6.

    Article  PubMed  CAS  Google Scholar 

  • Coombs, J., Hall, D.O., Long S.P. and Scurlock, J.M.O. (1985) Techniques in Bioproductivity and Photosynthesis, 2nd edn, Pergamon Press, Oxford, 298 pp.

    Google Scholar 

  • Cowan, I.R. (1977) Stomatal behaviour and environment. Adv. Bot. Res., 4, 117–228.

    Article  Google Scholar 

  • Dixon, M. and Grace, J. (1982) Water uptake by some chamber materials. Plant Cell Environ., 5, 323–7.

    Google Scholar 

  • Eckardt, F.E. (1966) Le principe de la soufflerie aerodynamique climatisee appliqué a l’étude des échanges gazeux de la couverture vegetale. Oecol. Plant., 1, 369–99.

    Google Scholar 

  • Ehleringer, J. and Cook, CS. (1980) Measurements of photosynthesis in the field: Utility of the CO2 depletion technique. Plant Cell Environ., 3, 479–82.

    CAS  Google Scholar 

  • Ehleringer, J. and Pearcy, R.W. (1983) Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiol., 73, 555–9.

    Article  PubMed  CAS  Google Scholar 

  • Farquhar, G.D. and Sharkey, T.D. (1982) Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol., 33, 317–45.

    Article  CAS  Google Scholar 

  • Field, C. Berry, J.A. and Mooney, H.A. (1982) A portable system for measuring carbon dioxide and water vapour exchanges of leaves. Plant Cell Environ., 5, 179–86.

    Google Scholar 

  • Field, C.B. and Mooney, H.A. (1989) Measuring photosynthesis under field conditions — Past and present approaches. In Instruments in Physiological Plant Ecology (eds P.J. Kramer, B.R. Strain, S. Funada and Y. Hashimoto), Academic Press, London (in press).

    Google Scholar 

  • Griffiths, J.H. and Jarvis, P.G. (1981) A null balance carbon dioxide and water vapour porometer. J. Exp. Bot., 32, 1157–68.

    Article  CAS  Google Scholar 

  • Hack, H.R.B. (1980) The uptake and release of water vapour by the foam seal of a diffusion porometer as a source of bias. Plant Cell Environ., 5, 53–7.

    Google Scholar 

  • Hilbert, D.W., Prudhomme, T.I. and Oechel, W.C. (1987) Response of tussock tundra to elevated carbon dioxide regimes: Analysis of ecosystem CO2 flux through modelling. Oecologia, 72, 446–72.

    Article  Google Scholar 

  • Hutchison, B.A. and Hicks, B.B. (eds) (1985) The Forest-Atmosphere Interaction, Reidel, Dordrecht, 684 pp.

    Google Scholar 

  • Incoll, L.D. (1977) Field studies of photosynthesis. Monitoring with 14CO2. In Environmental Effects on Crop Physiology (eds J.J. Landsberg and C.V. Cutting), Academic Press, London.

    Google Scholar 

  • Janác, J., Catsky, J., Brown, K.J. and Jarvis, P.G. (1971) Gas handling system. In Plant Photosyn-thetic Production: Manual of Methods, (eds Z. Šesták, J. Čatský and P.G. Jarvis), Junk, The Hague, pp. 132–48.

    Google Scholar 

  • Jarman, P.D. (1974) The diffusion of carbon dioxide and water vapour through stomata. J. Exp. Bot., 25, 927–36.

    Article  Google Scholar 

  • Jarvis, P.G. and Sandford, A.P. (1985) The measurement of carbon dioxide in air. In Instrumentation for Environmental Physiology, (eds B. Marshall and F.I. Woodward), Cambridge University Press, Cambridge, pp. 29–57.

    Google Scholar 

  • Johnson, H.B., Rowlands, P.G. and Ting, LP. (1979) Tritium and carbon-14 double isotope porometer for simultaneous measurements of transpiration and photosynthesis. Photo-synthetica, 13, 409–18.

    Google Scholar 

  • Kanemasu, E.T., Wesley, M.L., Hicks, B.B. and Heilman, J.L. (1979) Techniques for calculating energy and mass fluxes. In Modification of the Aerial Environment of Plants (eds B.J. Barfield and J.F. Gerber), American Society of Agricultural Engineering, St Joseph, Michigan, pp. 156–82.

    Google Scholar 

  • Karlsson, S. and Sveinbjörnsson, B. (1981) Methodological comparison of photosynthetic rates measured by the 14CO2 technique and infrared gas analysis. Photosynthetica, 15, 447–52.

    Google Scholar 

  • Keeling, C.D., Bacastow, R.B. and Whorf, T.P. (1982) Measurements of the concentration of carbon dioxide at Mauna Loa Observatory, Hawaii. In Carbon Dioxide Review: 1982 (ed. W.C. Clark), Clarendon Press, Oxford, pp. 377–85.

    Google Scholar 

  • Koch, W., Lange, O.L. and Schulze, E.-D. (1971) Ecophysiological investigations on wild and cultivated plants in the Negev Desert. I. Methods: A mobile laboratory for measuring carbon dioxide and water vapour exchange. Oecologia, 8, 296–309.

    Google Scholar 

  • Kramer, P. J., Strain, B.R., Funada, S. and Hashimoto, Y. (eds) (1989) Scientific Instruments in Physiological Plant Ecology, Academic Press, Orlando, in press.

    Google Scholar 

  • Küppers, M., Swan, A.G., Tomkins, D., Gabriel, W.C.L., Küppers, B.I.L. and Linder, S. (1987) A field portable system for the measurement of gas exchange of leaves under natural and controlled conditions: examples with field-grown Eucalyptus pauciflora Sieb, ex Spreng. ssp. pauciflora, E. behriana F. Muell. and Pinus radiata R. Don. Plant Cell Environ., 10, 425–35.

    Google Scholar 

  • Lange, O.L. (1962) Eine ‘Klapp-Küvette’ zur CO2-Gaswechselregistrierung an Blättern von Freilandpflanzen mit dem URAS. Ber. Dtsch. Bot. Ges., 75, 41–50.

    CAS  Google Scholar 

  • Lange, O.L., Koch, W. and Schulze, E.-D. (1969) CO2-Gaswechsel und Wasserhaushalt von Pflanzen in der Negev-Wüste am ende der Trockenzeit. Ber. Dtsch. Bot. Ges., 82, 39–61.

    CAS  Google Scholar 

  • Leuning, R. (1983) Transport of gases into leaves. Plant Cell Environ., 6, 181–94.

    CAS  Google Scholar 

  • Leverence, J.W. and Öquist, G. (1987) Quantum yields of photosynthesis at temperatures between -2° C and 35° C in a cold-tolerant C3 plant (Pinus sylvestris) during the course of one year. Plant Cell Environ., 10, 287–95.

    Article  Google Scholar 

  • Long, S.P. and Hallgren, J.-E. (1985) Measurement of CO2 assimilation by plants in the field and the laboratory. In Techniques in Bioproductivity and Photosynthesis (eds J. Coombs, D.O. Hall, S.P. Long and J.M.O. Scurlock), 2nd edn, Pergamon Press, Oxford, pp. 62–94.

    Google Scholar 

  • Ludwig, L.J. and Canvin, D.T. (1971) An open gas-exchange system for the simultaneous measurement of the CO2 and 14CO2 fluxes from leaves. Can. J. Bot., 49, 1299–133.

    Article  CAS  Google Scholar 

  • Luft, K.F. (1943) Über eine neues Methode der registrierenden Gasanalyse mit Hilfe der Absorption ultrarot Strahlen ohne spectrale Zerlegung. Zeitschr. Tech. Phys., 24, 97–104.

    CAS  Google Scholar 

  • Luft, K.F., Kesseler, G. and Zorner, K.H. (1967) Nicht dispersive Ultrarot-Gasanalyse mit dem UNOR. Chemie Ingenieur Technik, 39, 937–45.

    Article  CAS  Google Scholar 

  • Marshall, B. and Woodward, F.I. (eds) (1985) Instrumentation for Environmental Physiology, Cambridge University Press, Cambridge, 238 pp.

    Google Scholar 

  • McAlister, E.D. (1937) Spectrographic method for determining the carbon dioxide exchange between an organism and its surroundings. Plant Physiol., 12, 213–15.

    Article  PubMed  CAS  Google Scholar 

  • McKree, K.J. (1986) Measuring whole-plant daily carbon balance. Photosynthetica, 20, 82–93.

    Google Scholar 

  • Monteith, J.L. (1976) Vegetation and the Atmosphere. Vol. 2 Case Studies, Academic Press, London, p. 437.

    Google Scholar 

  • Mooney, H.A., Björkman, O., Ehleringer, J. and Berry, J. (1976) Photosynthetic capacity of in situ Death Valley plants. Carnegie Inst. Wash. Ybk., 75 410–13.

    Google Scholar 

  • Mooney, H.A., Dunn, E.L., Harrison, A.T., Morrow, P.A., Bartholomew, B. and Hays, R.L. (1971) A mobile laboratory for gas exchange measurements. Photosynthetica, 5, 128–32.

    Google Scholar 

  • Moore, R.T., Ehleringer, J. Miller, P.C., Caldwell, M.M. and Tieszen, L.L. (1973) Gas exchange studies of four alpine tundra species at Niwot Ridge, Colorado, In Primary Production and Population Processes, Tundra Biome (eds L.C. Bliss and F. Wielgolaski), University of Alberta, Edmonton, pp. 211–17.

    Google Scholar 

  • Moreshet, S., Koller, D. and Stanhill, G. (1968) The partitioning of resistances to gaseous diffusion in the leaf epidermis and the boundary layer. Ann. Bot., 32, 695–701.

    Google Scholar 

  • Musgrave, R.B. and Moss, D.N. (1961) Photosynthesis under field conditions. I. A portable, closed system for determining net assimilation and respiration of corn. Crop Sci., 1, 37–41.

    Article  CAS  Google Scholar 

  • Nobel, P.S. (1983) Biophysical Plant Physiology and Ecology, W.H. Freeman, San Francisco, 608 pp.

    Google Scholar 

  • Oechel, W.C. and Lawrence, W.T. (1979) Energy utilization and carbon metabolism in Mediterranean scrub vegetation of Chile and California. I. Methods: A transportable cuvette field photosynthesis and data acquisition system and representative results for Ceanothus gregii. Oecologia , 39, 321–36.

    Article  Google Scholar 

  • Parkhurst, D.F. (1986) Internal leaf structure: A three dimensional perspective. In On the Economy of Plant Form and Function (ed. T.J. Givnish), Cambridge University Press, Cambridge, pp. 215–49.

    Google Scholar 

  • Parkinson, K.J. (1985) A simple method for determining the boundary layer resistance in leaf cuvettes. Plant Cell Environ., 8, 223–6.

    Google Scholar 

  • Parkinson, K.J. and Day, W. (1979) The use of orifices to control the flow rate of gases. J. Appl. Ecol., 16, 623–32.

    Article  Google Scholar 

  • Parkinson, K.J. and Day, W. (1981) Water vapour calibration using salt hydrate transitions. J. Exp. Bot., 32, 411–18.

    Article  CAS  Google Scholar 

  • Parkinson, K.J. and Legg, B.J. (1978) Calibrations of infrared gas analysers for carbon dioxide. Photosynthetica, 12, 65–7.

    CAS  Google Scholar 

  • Pearcy, R.W. and Calkin, H.W. (1983) Carbon dioxide exchange of C3 and C4 tree species in the understory of a Hawaiian forest. Oecologia, 58, 26–32.

    Article  Google Scholar 

  • Pearcy, R.W., Osteryoung, K. and Calkin, H.W. (1985) Photosynthetic responses to dynamic light environments by Hawaiian trees: Time course of CO2 uptake and carbon gain during sunflecks. Plant Physiol., 79, 896–902.

    Article  PubMed  CAS  Google Scholar 

  • Penning de Vries, F.W.T., Akkersdijk, J.WJ. and van Oorschot, J.L.P. (1984) An error in measuring respiration and photosynthesis due to transpiration. Photosynthetica, 18, 146–9.

    Google Scholar 

  • Revelle, R. and Suess, H.E. (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase in atmospheric CO2 during the past decades. Tellus, 9, 18.

    Article  CAS  Google Scholar 

  • Richards, J.M. (1971) Simple expression for the saturation vapor pressure of water in the range -50 degrees to 140 degrees. Br. J. Appl. Phys., 4, L15-L18.

    CAS  Google Scholar 

  • Samish, Y.B. (1978) Measurement and control of CO2 concentration in air is influenced by the desiccant. Photosynthetica, 12, 73–5.

    CAS  Google Scholar 

  • Schulze, E.-D., Hall, A.E., Lange, O.L. and Walz, H. (1982) A portable steady-state porometer for measuring the carbon dioxide and water vapour exchanges of leaves under natural conditions. Oecologia, 53, 141–5.

    Article  Google Scholar 

  • Šesták, Z., Čatský, J. and Jarvis, P.G. (1971) Plant Photosynthetic Production: Manual of Methods, Junk, The Hague, 800 pp.

    Google Scholar 

  • Sharkey, T.D. (1985) O2-insensitive photosynthesis in C3 plants: Its occurrence and a possible explanation. Plant Physiol., 78, 71–5.

    Article  PubMed  CAS  Google Scholar 

  • Sharkey, T.D., Imai, K., Farquhar, G.D. and Cowan, I.R. (1982) A direct confirmation of the standard method of estimating intercellular partial pressure of CO2. Plant Physiol., 69, 657–9.

    Article  PubMed  CAS  Google Scholar 

  • Shimshi, D. (1969) A rapid field method for measuring photosynthesis with labelled carbon dioxide. J. Exp. Bot., 20, 381–401.

    Article  CAS  Google Scholar 

  • Thorn, A.S. (1975) Momentum, mass, and heat exchange of plant canopies. In Vegetation and the Atmosphere. Vol. 1 Principles (ed. J.L. Monteith), Academic Press, London, pp. 57–110.

    Google Scholar 

  • Voznesenskiï, V.L., Zalenskiï, O.V. and Austin, R.B. (1971) Methods of measuring rates of photosynthesis using carbon-14 dioxide. In Plant Photosynthetic Production: Manual of Methods (eds Z. Sesták, J. Catsky and P.G. Jarvis), Junk, The Hague, pp. 276–93.

    Google Scholar 

  • Williams, B.A., Gurner, P.J. and Austin, R.B. (1982) A new infrared gas analyzer and portable photosynthesis meter. Photosyn. Res., 3, 141–51.

    Article  CAS  Google Scholar 

  • Wong, S.C., Cowan, I.R. and Farquhar, G.D. (1979) Stomatal conductance correlates with photosynthetic capacity. Nature, London, 282, 424–6.

    Article  Google Scholar 

  • Woodrow, I.E., Ball, J.T. and Berry, J.A. (1987) A general expression for the control of the rate of photosynthetic CO2 fixation by stomata, the boundary layer and radiation exchange. In Progress in Photosynthesis Research (ed. J. Biggins), Martinus Nijhoff, the Netherlands, pp. 225–8.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Chapman and Hall

About this chapter

Cite this chapter

Field, C.B., Ball, J.T., Berry, J.A. (1989). Photosynthesis: principles and field techniques. In: Pearcy, R.W., Ehleringer, J.R., Mooney, H.A., Rundel, P.W. (eds) Plant Physiological Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2221-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2221-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7496-4

  • Online ISBN: 978-94-009-2221-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics