Turing Machines, Recursively Enumerable Languages and Type 0 Grammars

  • Barbara H. Partee
  • Alice Ter Meulen
  • Robert E. Wall
Part of the Studies in Linguistics and Philosophy book series (SLAP, volume 30)


We have seen that a pushdown automaton can carry out computations which are beyond the capability of a finite automaton, which is perhaps the simplest sort of machine able to accept an infinite set of strings. At the other end of the scale of computational power is the Turing machine (after the English mathematician A. M. Turing, who devised them), which can carry out any set of operations which could reasonably be called a computation.


Turing Machine Input String Empty String Input Tape Alphabet Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Barbara H. Partee
    • 1
  • Alice Ter Meulen
    • 2
  • Robert E. Wall
    • 3
  1. 1.Department of LinguisticsUniversity of MassachusettsAmherstUSA
  2. 2.Departments of Philosophy and LinguisticsIndiana UniversityBloomingtonUSA
  3. 3.Department of LinguisticsUniversity of TexasAustinUSA

Personalised recommendations