Skip to main content

Extensional Flow Properties and Their Measurement

  • Chapter
Melt Rheology and Its Role in Plastics Processing
  • 1754 Accesses

Abstract

For deformations that are either very small or very slow, the theory of linear viscoelasticity is a unifying concept that provides relationships between the material functions that are determined using various types of deformations. For example, this theory tells us that in start-up flow, the shear stress growth coefficient, η +(t), is independent of shear rate. Furthermore, it provides a simple relationship between this material function and the tensile stress growth function, \(\eta _E^ + \left( t \right)\), that is measured at the start-up of steady simple extension:

$$\eta _E^ + \left( t \right) = 3{\eta ^ + }\left( t \right)$$
(6-1)

Thus, as long as the total strain or the maximum strain rate that occurs during a particular deformation is very small, no new information is obtained from the use of an extensional flow, once the linear viscoelastic behavior has been established by use of a shearing deformation. A corollary of this statement is that the response of a melt to any small or slow extensional flow can be calculated from a material function determined using a small or slow shearing experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. I. Tanner, Engineering Rheology, Oxford University Press, Oxford, 1986.

    Google Scholar 

  2. R. G. Larson, Constitutive Equations for Polymer Melts and Solutions, Butter-worths, Boston, 1988.

    Google Scholar 

  3. M. H. Wagner, J. Non-Newt. Fl. Mech. 4: 39 (1978).

    Article  ADS  Google Scholar 

  4. J. M. Dealy, J. Non-Newt. Fl. Mech. 4: 9 (1978).

    Article  MATH  Google Scholar 

  5. C. J. S. Petrie, Elongational Flows, Pittman, London, 1979.

    MATH  Google Scholar 

  6. J. M. Dealy, Rheometers for Molten Plastics, Van Nostrand Reinhold, N.Y., 1982.

    Google Scholar 

  7. F. N. Cogswell, Plast. Polym. 36: 109 (1968).

    Google Scholar 

  8. H. Münstedt, Rheol. Acta 14: 1077 (1975).

    Article  Google Scholar 

  9. H. M. Laun and H. Münstedt, Rheol. Acta 15: 517 (1976).

    Article  Google Scholar 

  10. J. Meissner, Rheol. Acta 8: 78 (1969).

    Article  Google Scholar 

  11. J. Meissner, Rheol. Acta 10: 230 (1971).

    Article  Google Scholar 

  12. H. M. Laun and H. Münstedt, Rheol. Acta 17: 415 (1978).

    Article  Google Scholar 

  13. H. Münstedt, J. Rheol. 23: 421 (1979).

    Article  ADS  Google Scholar 

  14. R. Muller and D. Froelich, Polymer 20: 1477 (1985).

    Article  Google Scholar 

  15. W. F. Busse, J. Polym. Sci. A-2 5: 1249 (1967).

    Google Scholar 

  16. J. Meissner, Pure and Appl. Chem. 42: 553 (1975).

    Article  Google Scholar 

  17. H. H. Winter, Pure and Appl. Chem. 55: 943 (1983).

    Article  Google Scholar 

  18. J. Meissner, Trans. Soc. Rheol. 16: 405 (1972).

    Article  Google Scholar 

  19. K. F. Wissbrun, Polym. Eng. Sci. 13: 342 (1973).

    Article  Google Scholar 

  20. R. K. Bayer, Rheol. Acta 18: 25 (1979).

    Article  Google Scholar 

  21. H. M. Laun and H. Schuch, J. Rheol. 33: 119 (1989).

    Article  ADS  Google Scholar 

  22. J. Sampers and P. J. R. Leblans, J. Non-Newt. Fl. Mech. 30: 325 (1988).

    Article  Google Scholar 

  23. D. Githuku, M. Eng. Thesis, Chem. Eng., McGill Univ., Montreal, 1985.

    Google Scholar 

  24. F. N. Cogswell, Trans. Soc. Rheol. 16: 383 (1972).

    Article  Google Scholar 

  25. F. N. Cogswell, Poly. Eng. Sci. 12: 64 (1972).

    Article  Google Scholar 

  26. R. N. Shroff, L. V. Cancio and M. Shida, Trans. Soc. Rheol. 21: 429 (1977).

    Article  Google Scholar 

  27. F. N. Cogswell, J. Non-Newt. Fl. Mech. 4: 23 (1978).

    Article  Google Scholar 

  28. A. E. Everage and R. L. Ballman, Nature 273: 213 (1978).

    Article  ADS  Google Scholar 

  29. H. H. Winter, C. W. Macosko and K. E. Bennett, Rheol. Acta 18: 323 (1979).

    Article  Google Scholar 

  30. T. Hsu, P. Shirodkar, R. L. Laurence and H. H. Winter, Proc. 8th Intern. Congr. Rheol., 2: 155 (1980).

    Google Scholar 

  31. H. Münstedt and H. M. Laun, Rheol. Acta 18: 492 (1979).

    Article  Google Scholar 

  32. M. H. Wagner, Rheol. Acta 15: 133 (1976).

    Article  Google Scholar 

  33. T. Raible, A. Desmarmels and J. Meissner, Polym. Bull. 1: 397 (1979).

    Article  Google Scholar 

  34. H. Münstedt and H. M. Laun, Rheol. Acta 20: 211 (1981).

    Article  Google Scholar 

  35. H. M. Laun, J. Rheol. 30: 459 (1986).

    Article  ADS  Google Scholar 

  36. J. J. Linster and J. Meissner, Polymer Bull. 16: 187, (1986).

    Article  Google Scholar 

  37. H. Münstedt, J. Rheol. 24: 847 (1980).

    Article  ADS  Google Scholar 

  38. A. Franck and J. Meissner, Rheol. Acta 23: 117 (1984).

    Article  Google Scholar 

  39. J. J. Linster and J. Meissner, Makromol Chem. 190: 599 (1989).

    Article  Google Scholar 

  40. Y. Ide and J. L. White, J. Appl. Polym. Sci. 22: 1061 (1978).

    Article  Google Scholar 

  41. F. N. Cogswell, Trans. Soc. Rheol. 16: 383 (1972).

    Article  Google Scholar 

  42. J. M. Dealy, J. Rheol. 28: 181 (1984).

    Article  MATH  ADS  Google Scholar 

  43. M.-C. Yang and J. M. Dealy, J. Rheol. 31: 113 (1987).

    Article  ADS  Google Scholar 

  44. C. D. Denson, “Costech 2000 Process Simulator”, Costech Associates Inc., 1184 Corner Ketch Rd., Newark, DE 1971.

    Google Scholar 

  45. Sh. Chatraei, C. W. Macosko and H. H. Winter, J. Rheol. 25: 433 (1981).

    Article  ADS  Google Scholar 

  46. P. R. Soskey and H. H. Winter, J. Rheol. 29: 493 (1985).

    Article  ADS  Google Scholar 

  47. A. C. Papanastasiou, C. W. Macosko and L. E. Scriven, in Interrelations between Processing Structure and Properties, edited by J. C. Seferis and P. S. Theocaris, Elsevier Scientific Publishers, Amsterdam, 1984.

    Google Scholar 

  48. J. A. Van Aken and H. Janeschitz-Kriegl, Rheol. Acta 19: 744 (1980).

    Article  Google Scholar 

  49. J. A. Van Aken and H. Janeschitz-Kriegl, Rheol. Acta 19:744 (1980); 20: 419 (1981).

    Google Scholar 

  50. J. Meissner, T. Raible and S. E. Stephenson, J. Rheol. 25: 1 (1981).

    Article  ADS  Google Scholar 

  51. J. Meissner, Polym. Eng. Sci. 27: 537 (1987).

    Article  Google Scholar 

  52. J. Meissner, S. E. Stephenson, A. Desmarmels and P. Portman, J. Non-Newt. Fl. Mech. 11: 221 (1982).

    Article  Google Scholar 

  53. C. D. Denson and D. L. Crady, J. Appl. Polym. Sci. 18: 1611 (1974).

    Article  Google Scholar 

  54. C. D. Denson and D. C. Hilton, Polym. Eng. Sci. 20: 535 (1980).

    Article  Google Scholar 

  55. R. B. Secor, C. W. Macosko and L. E. Scriven, J. Non-Newt. Fl. Mech. 23: 355 (1987).

    Article  Google Scholar 

  56. T. Samurkas, R. G. Larson and J. M. Dealy, J. Rheol. 33: 559 (1989).

    Article  ADS  Google Scholar 

  57. J. F. Stevenson, S. C.-K. Chung and J. T. Jenkins, Trans. Soc. Rheol. 19: 397 (1975).

    Article  Google Scholar 

  58. A. Desmarmels and J. Meissner, Rheol. Acta 24: 253 (1985).

    Article  Google Scholar 

  59. A. Desmarmels and J. Meissner, Coll. Polym. Sci. 264: 829 (1986).

    Article  Google Scholar 

  60. M. H. Wagner, 61st Annual Mtg., Soc. of Rheology, Montreal, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dealy, J.M., Wissbrun, K.F. (1999). Extensional Flow Properties and Their Measurement. In: Melt Rheology and Its Role in Plastics Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2163-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2163-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5886-2

  • Online ISBN: 978-94-009-2163-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics