Linear Viscoelasticity

  • John M. Dealy
  • Kurt F. Wissbrun


The simplest type of viscoelastic behavior is linear viscoelasticity. This type of behavior is observed when the deformation is sufficiently mild that the molecules of a polymeric material are disturbed from their equilibrium configuration and entanglement state to a negligible extent. Obviously, very small deformations would be in this category. This might be a deformation in which the total strain was very small, or the early stages of a larger deformation. For melts, which have a fading memory and can flow, linear behavior is also observed when a deformation occurs very slowly, as in steady simple shear at very low shear rates. This is because relaxation processes due to Brownian motion are always acting to return the molecules to their equilibrium state, and if the deformation is tending to take them away from this state only very slowly, this relaxation mechanism has plenty of time to “keep up” with this process, with the net result that no significant deviation from equilibrium occurs. One manifestation of this is that at very low shear rates, the viscosity of a polymeric liquid becomes independent of shear rate.


Molecular Weight Distribution Relaxation Modulus Creep Compliance Linear Viscoelasticity Narrow Molecular Weight Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Ferry, Viscoelastic Properties of Polymers, Third Edition, John Wiley & Sons, New York, 1980.Google Scholar
  2. 2.
    N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelasticity: An Introduction, Springer-Verlag, Berlin, 1989.zbMATHGoogle Scholar
  3. 3.
    R. G. Larson, J. Rheol. 29:823 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    R. G. Larson, Rheol. Acta 24:327 (1985).CrossRefGoogle Scholar
  5. 5.
    M. H. Wagner, Rheol. Acta 15:136 (1976).CrossRefGoogle Scholar
  6. 6.
    D. R. Wiff, J. Rheol. 22:589 (1978).ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    C. Y.-C. Lee, D. R. Wiff and V. G. Rogers, J. Macromol. Sci., Phys. B19:211 (1981).Google Scholar
  8. 8.
    K. F. Wissbrun, J. Rheol. 30:1143 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    M. Kurata, Macromolecules 17:895 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    H. C. Booij and J. H. Thoone, Rheol. Acta 21:15 (1982).CrossRefzbMATHGoogle Scholar
  11. 11.
    H. C. Booij and J. H. M. Palmen, Rheol. Acta 21:376 (1982).CrossRefGoogle Scholar
  12. 12.
    W. W. Graessley, W. S. Park and R. L. Crawley, Rheol. Acta 16:291 (1977).CrossRefGoogle Scholar
  13. 13.
    P. Leblans, “Constitutive analysis of the nonlinear viscoelasticity of polymer fluids in various types of flow,” Doctoral Thesis, University of Antwerp, Wilrijk, 1986.Google Scholar
  14. 14.
    G. R. Zeichner and P. D. Patel, Proc. 2nd World Congr. Chem. Eng., Vol. 6, p. 373, Montreal, 1981.Google Scholar
  15. 15.
    S. Wu, Polym. Eng. Sci. 25:122 (1985).CrossRefGoogle Scholar
  16. 16.
    W. H. Tuminello, “Relating Rheology to Molecular Weight Properties of Polymers,” in Polymer Proc. and Flow Dynamics, Vol. 9 of Encyc. of Fl. Mech., Gulf Publ., 1989.Google Scholar
  17. 17.
    W. H. Tuminello, Polym. Eng. Sci. 26:1339 (1986).CrossRefGoogle Scholar
  18. 18.
    S. Wu, Polym. Eng. Sci. 28:538 (1988).CrossRefGoogle Scholar
  19. 19.
    W. H. Tuminello, Polym. Eng. Sci. 29:645 (1989).CrossRefGoogle Scholar
  20. 20.
    J. P. Montfort, G. Marin, J. Arman and Ph. Monge, Polymer 19:277 (1978).CrossRefGoogle Scholar
  21. 21.
    J. P. Montfort, G. Marin, J. Arman and Ph. Monge, Rheol. Acta 18:623 (1979).CrossRefGoogle Scholar
  22. 22.
    H. Schuch, Rheol. Acta 27:384 (1988).CrossRefGoogle Scholar
  23. 23.
    D. J. Plazek, N. Raghupathi and S. J. Obron, J. Rheol. 23:477 (1979).ADSCrossRefGoogle Scholar
  24. 24.
    A. C. Papanastasiou, L. E. Striven and C. W. Macosko, J. Rheol. 27:387 (1983).ADSCrossRefGoogle Scholar
  25. 25.
    H. M. Laun, J. Rheot. 30:459 (1986).ADSCrossRefGoogle Scholar
  26. 26.
    M. Baumgartel and H. H. Winter, SPE Tech. Rapers 35:1652 (1989)Google Scholar
  27. 27.
    J. Honerkamp and J. Weese, “Determination of the relaxation spectrum by a regularization technique,” Macromolecules, submitted 1990.Google Scholar
  28. 28.
    P. E. Rouse Jr., J. Chem. Phys. 21:1272 (1953).ADSCrossRefGoogle Scholar
  29. 29.
    B. H. Zimm, J. Chem. Phys. 24:269 (1956).MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    F. Bueche, J. Chem. Phys. 20:1959 (1952).ADSCrossRefGoogle Scholar
  31. 31.
    G. C. Berry and T. G. Fox, Adv. Polym. Sci. 5:261 (1968).CrossRefGoogle Scholar
  32. 32.
    K. Ninomiya, J. D. Ferry and Y. Oyanagi, J. Phys. Chem. 67:2297 (1963).CrossRefGoogle Scholar
  33. 33.
    H. Leaderman, R. G. Smith and L. C. Williams, J. Polym. Sci. 36:233 (1959).ADSCrossRefGoogle Scholar
  34. 34.
    M. Doi, J. Non-Newt. Fl. Mech. 23:151 (1987).CrossRefzbMATHGoogle Scholar
  35. 35.
    W. W. Graessley, “Viscoelasticity and Flow of Polymer Melts and Concentrated Solutions,” in Physical Principles of Polymers, Edited by J. E. Mark, Amer. Chem. Soc., Wash. D.C., 1984.Google Scholar
  36. 36.
    S. F. Edwards, Proc. Phys. Soc. 92:9 (1967).ADSCrossRefGoogle Scholar
  37. 37.
    P. G. deGennes, J. Chem. Phys. 55:572 (1971).ADSCrossRefGoogle Scholar
  38. 38.
    M. Doi and S. F. Edwards, J. Chem. Soc., Faraday Trans. II: 74:1789, 1802, 1818 (1978); 75:38 (1979).Google Scholar
  39. 39.
    M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, Oxford, 1986.Google Scholar
  40. 40.
    W. W. Graessley, J. Polym. Sci., Polym. Phys. Ed. 18:27 (1980).ADSCrossRefGoogle Scholar
  41. 41.
    M. Doi, J. Polym. Sci., Polym. Phys. Ed. 21:667 (1983);ADSCrossRefGoogle Scholar
  42. M. Doi, J. Polym. Sci. 21:667 (1983).Google Scholar
  43. 42.
    J. Roovers, Polym. J. 18:153 (1986).CrossRefGoogle Scholar
  44. 43.
    M. Doi, W. W. Graessley, E. Helfand and D. S. Pearson, Macromolecules 20:1900 (1987).ADSCrossRefGoogle Scholar
  45. 44.
    M. Doi and N. Y. Kuzuu, J. Polym. Sci., Polym. Lett. 18:775 (1980).CrossRefGoogle Scholar
  46. 45.
    D. S. Pearson and E. Helfand, Macromolecules 17:888 (1984).ADSCrossRefGoogle Scholar
  47. 46.
    T. C. B. McLeish, Xth Int. Congr. Rheol. 2:115 (1988).Google Scholar
  48. 47.
    C. F. Curtiss and R. B. Bird, J. Chem. Phys. 74:2016 (1982).ADSCrossRefGoogle Scholar
  49. 48.
    R. B. Bird, C. F. Curtiss, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol. 2, Second Edition, John Wiley & Sons, New York, 1987.Google Scholar
  50. 49.
    A. Kolinski, J. Skolnick and R. Yaris, J. Chem. Phys. 86:1567, 7164, 7174 (1987).Google Scholar
  51. 50.
    W. C. Dannhauser, W. C. Child, Jr. and J. D. Ferry, J. Colloid Sci. 13:103 (1958).CrossRefGoogle Scholar
  52. 51.
    K. S. Cole and R. H. Cole, J. Chem. Phys. 9:341 (1941).ADSCrossRefGoogle Scholar
  53. 52.
    C. D. Han and K.-W. Lem, Polym. Eng. Rev. 2:135 (1982).Google Scholar
  54. 53.
    H. M. Laun, Prog. Colloid Polym. Sci. 75:111 (1987).Google Scholar
  55. 54.
    C. L. Rohn, SPE Tech. Papers 35:870 (1989).Google Scholar
  56. 55.
    D. J. Plazek, Polym. J. 12:43 (1980).CrossRefGoogle Scholar
  57. 56.
    G. Link and F. R. Schwarzl, Rheol. Acta 26:375 (1987).CrossRefGoogle Scholar
  58. 57.
    S. Onogi, T. Masuda and K. Kitagawa, Macromolecules 3:109 (1970).ADSCrossRefGoogle Scholar
  59. 58.
    G. Marin and W. W. Graessley, Rheol. Acta 16:527 (1977).CrossRefGoogle Scholar
  60. 59.
    T. Masuda, K. Kitagawa, T. Inoue and S. Onogi, Macromolecules 3:116 (1970).ADSCrossRefGoogle Scholar
  61. 60.
    R. D. Andrews and A. V. Tobolsky, J. Polym. Sci. 6:221 (1951).ADSCrossRefGoogle Scholar
  62. 61.
    J. Meissner, J. Appl. Polym. Sci. 16:2877 (1972).CrossRefGoogle Scholar
  63. 62.
    H. M. Laun, Rheol. Acta 17:1 (1978).Google Scholar
  64. 63.
    G. Marin, J. P. Montfort, J. Arman and Ph. Monge, Rheol. Acta 18:629 (1979).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • John M. Dealy
    • 1
  • Kurt F. Wissbrun
    • 2
  1. 1.Department of Chemical EngineeringMcGill UniversityMontrealCanada
  2. 2.Hoechst Celanese Research DivisionSummitUSA

Personalised recommendations