Advertisement

On-Line Measurement of Rheological Properties

  • John M. Dealy
  • Kurt F. Wissbrun

Abstract

There are three types of application of on-line rheometers: process monitoring, quality control, and automatic process control. The first type arises primarily in the development of a new material or process, when it is useful to be able to monitor the effects of changes in formulation or operating parameters on product characteristics. In a quality control application, a slow and labor-intensive laboratory test procedure is replaced by a direct indication of product quality. The most sophisticated type of application is in automatic process control, where the rheometer is used as a sensor providing an input signal to the controller. A general review of process rheometers and their applications has been published [1].

Keywords

Rheological Property Outer Cylinder Concentric Cylinder Manipulate Variable Gear Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Dealy, Chem. Eng., Oct. 1984, p. 62.Google Scholar
  2. 2.
    A. Göttfert, Kunststoffe 76: 1200 (1986).Google Scholar
  3. 3.
    H.-G. Fritz, Kunststoffe 75: 785 (1985).Google Scholar
  4. 4.
    A. Kepes, Proc. 8th Int. Congr. Rheol. 2:185, Plenum Press, New York, 1980.Google Scholar
  5. 5.
    A. Kepes, U.S. Patent 4, 334, 424.Google Scholar
  6. 6.
    J. Starita and C. L. Rohn, Plastics Compounding, March/April 1987, p. 46.Google Scholar
  7. 7.
    G. R. Zeichner and C. W. Macosko, SPE Tech. Papers 28: 79 (1982).Google Scholar
  8. 8.
    W. Heinz, Proc. IXth Intern. Cong. Rheol. 4: 85 (1984).ADSGoogle Scholar
  9. 9.
    G. M. Khachatryan, K. D. D’yakov, A. A. Strel’tsov and K. N. Sosulin, Fibre Chem. 15:228 (1983), Translation from the Russian of Khimicheskie Volokna, No. 3, p. 48, May-June, 1983.Google Scholar
  10. 10.
    J. M. Dealy, U.S. Patent No. 4,463, 928 (1984).Google Scholar
  11. 11.
    A. J. Giacomin, T. Samurkas and J. M. Dealy, Polym. Eng. Sci. 29: 499 (1989).CrossRefGoogle Scholar
  12. 12.
    J. M. Dealy, U.S. Patent No. 4, 571, 989 (1986).Google Scholar
  13. 13.
    T. O. Broadhead, Doctoral Dissertation, Chem. Eng., McGill Univ., Montreal, 1991.Google Scholar
  14. 14.
    B. Nelson, Doctoral Dissertation, Chem. Eng., McGill Univ., Montreal, 1991.Google Scholar
  15. 15.
    H. Revesz, Kunststoffe 64: 35 (1974).Google Scholar
  16. 16.
    L. Halasz, I. Mondvai and H. Revesz, Rheol. Acta 22: 313 (1983).CrossRefGoogle Scholar
  17. 17.
    J. M. Starita and C. W. Macosko, SPE Tech. Papers 29: 522 (1983).Google Scholar
  18. 18.
    A. R. Agrawal, I. O. Pandelidis and M. Pecht, Polym. Eng. Sci. 27: 1345 (1987).CrossRefGoogle Scholar
  19. 19.
    A. Dreiblatt, H. Herrmann and H.-J. Nettelnbreker, Plastics Engineering, Oct. 1987, p. 31.Google Scholar
  20. 20.
    H.-G. Fritz and B. Stoehrer, Intern. Polym. Proc. 1: 31 (1986).Google Scholar
  21. 21.
    J. Curry, S. Jackson, B. Stoehrer and A. van der Veen, Chem. Eng., Nov. 1988, p. 43.Google Scholar
  22. 22.
    A. Pabedinskas, W. R. Cluett and S. T. Balke, Polyur. Eng. Sci. 29: 993 (1989).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • John M. Dealy
    • 1
  • Kurt F. Wissbrun
    • 2
  1. 1.Department of Chemical EngineeringMcGill UniversityMontrealCanada
  2. 2.Hoechst Celanese Research DivisionSummitUSA

Personalised recommendations