Advertisement

Role of Rheology in Film Blowing and Sheet Extrusion

  • John M. Dealy
  • Kurt F. Wissbrun

Abstract

The essential elements of the film blowing process are illustrated in Figure 17-1. An extruder melts the resin and forces it through a screen pack and an annular die. The extruded melt, in the form of a tube, flows upward under the influence of a vertical, “machine direction” force, applied by means of nip rolls some distance above the die. There is an overall stretching of the polymer in the machine direction, and the ratio of the linear speed of the film through the nip rolls, divided by the average melt velocity at the die lips, is called the “draw down ratio” (DDR).

Keywords

Aerodynamic Force Machine Direction Bubble Shape Film Resin Bubble Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. L. Steward and A. W. Cline, “Barrier screw hikes quality of HMW-HDPE blown film,” Plastics Engineering, Sept. 1987, p. 45.Google Scholar
  2. 2.
    J. P. Christiano, SPE Tech. Papers 35:96 (1989); Plastics Eng., June 1989, p. 57.Google Scholar
  3. 3.
    S. J. Kurtz and L. S. Scarola, Plastics Engineering, June 1982, p. 45.Google Scholar
  4. 4.
    J. C. Miller, R. Wu and G. S. Cieloszyk, Plastics Engineering, Jan. 1986, p. 37.Google Scholar
  5. 5.
    B. Proctor, “Flow analysis in extrusion dies,” SPE Journ. 28, Feb. 1972, p. 34.Google Scholar
  6. 6.
    J. Wortberg and K. P. Schmitz, Kunststoffe 72: 198 (1982).Google Scholar
  7. 7.
    P. Saillard and J. F. Agassant, Polym. Proc. Eng. 2: 37 (1984).Google Scholar
  8. 8.
    J. Vlcek, V. Kral and K. Kouba, Plast. Rubber Proc. App. 4: 3099 (1984).Google Scholar
  9. 9.
    C. Rauwendaal, Polym. Eng. Sci. 27: 186 (1987).CrossRefGoogle Scholar
  10. 10.
    J. Vlcek, J. Vlachopoulos and J. Perdikoulias, Intern. Polym. Proc. II 3 /4, 174 (1988).Google Scholar
  11. 11.
    J. Perdikoulias, J. Vlcek and J. Vlachopoulos, Adv. Polym. Technol. 7, no. 3, 333 (1987).CrossRefGoogle Scholar
  12. 12.
    D. M. Kalyon, J. S. Yu and C.-C. Du, Polym. Proc. Eng. 5: 179 (1987).Google Scholar
  13. 13.
    P. C. Gates, TAPPI J. 70 (no. 6): 38 (1987).Google Scholar
  14. 14.
    F. N. Cogswell, Polymer Melt Rheology, John Wiley & Sons, New York, 1981, p. 101.Google Scholar
  15. 15.
    S. J. Kurtz, in Advances in Rheology, vol. 3, p. 399, Edited by B. Mena et al., UNAM, Mexico City, 1984 ( Proc. IXth Intern. Congr. Rheol.).Google Scholar
  16. 16.
    S. J. Kurtz, T. R. Blakeslee, III and S. S. Scarola, U.S. Patent 4,282, 177 (1981).Google Scholar
  17. 17.
    Heated die-lip system increases LLDPE film productivity,“ Modem Plastics,Feb. 1987, p. 82.Google Scholar
  18. 18.
    A. Rudin, J. E. Blacklock, S. Nam and A. T. Worm, SPE Tech. Papers 32: 1154 (1986).Google Scholar
  19. 19.
    A. J. Athey, R. C. Thann, R. D. Souffle and G. R. Chapman, SPE Tech. Papers, 32: 1149 (1986).Google Scholar
  20. 20.
    A. V. Ramamurthy, J. Rheol. 30: 337 (1986).CrossRefADSGoogle Scholar
  21. 21.
    A. V. Ramamurthy, U.S. Patent 4,552, 712 (1985).Google Scholar
  22. 22.
    A. V. Ramamurthy, U.S. Patent 4,554, 120 (1985).Google Scholar
  23. 23.
    A. V. Ramamurthy, U. S. Patent 4,522, 776 (1985).Google Scholar
  24. 24.
    M. Rokudai, S. Mihara and T. Fujiki, J. Appl. Polym. Sci. 23: 3289 (1979).CrossRefGoogle Scholar
  25. 25.
    H. Münstedt, Colloid Poly. Sci. 259: 966 (1981).CrossRefGoogle Scholar
  26. 26.
    R. Farber and J. Dealy, Polym. Eng. Sci. 14: 435 (1974).CrossRefGoogle Scholar
  27. 27.
    T. A. Huang and G. A. Campbell, Adv. Polym Technol. 5 (3): 181 (1985).zbMATHCrossRefGoogle Scholar
  28. 28.
    R. K. Gupta, A. B. Metzner and K. F. Wissbrun, Polym. Eng. Sci. 22: 174 (1982).CrossRefGoogle Scholar
  29. 29.
    B. Cao and G. A. Campbell, Intern. J. Polym. Proc. 4: 114 (1989).Google Scholar
  30. 30.
    H. O. Corbett, U.S. Patent No. 3,167, 814 (1965).Google Scholar
  31. 31.
    F. J. Herrington, U.S. Patent No. 4,118, 453 (1978).Google Scholar
  32. 32.
    D. N. Jones and S. J. Kurtz, U.S. Patent 4,330, 501 (1982).Google Scholar
  33. 33.
    T. Kanai and J. L. White, J. Polym. Eng. 5: 135 (1985).Google Scholar
  34. 34.
    J. Meissner, Pure Appl. Chem. 42: 553 (1975).CrossRefGoogle Scholar
  35. 35.
    H. H. Winter, Pure Appl. Chem. 55: 943 (1983).CrossRefGoogle Scholar
  36. 36.
    H. M. Laun and H. Schuch, J. Rheol. 33: 119 (1989).CrossRefADSGoogle Scholar
  37. 37.
    C. D. Han and T. H. Kwack, J. Appl. Polym. Sci. 28: 3399 (1983).CrossRefGoogle Scholar
  38. 38.
    T. H. Kwack and C. D. Han, J. Appl. Polym. Sci. 28: 3419 (1983).CrossRefGoogle Scholar
  39. 39.
    C. D. Han and J. Y. Park, J. Appl. Polym. Sci. 19: 3291 (1975).CrossRefGoogle Scholar
  40. 40.
    C. D. Han and R. Shetty, IEC Fund. 16: 49 (1977).CrossRefGoogle Scholar
  41. 41.
    W. Minoshima and J. L. White, J. Non-Newt. Fl. Mech. 19: 275 (1986).CrossRefGoogle Scholar
  42. 42.
    J. L. White and H. Yamane, Pure Appl. Chem. 59: 193 (1987).CrossRefGoogle Scholar
  43. 43.
    J. J. Cain and M. M. Denn, Polym. Eng. Sci. 28: 1527 (1988).CrossRefGoogle Scholar
  44. 44.
    A. Ghijsels, J. J. S. M. Ente and J. Raadsen, in Integration of Fundamental Polymer Science and Technology-2, Ed. by P. J. Lemstra and L. A. Kleintjens, Elsevier Applied Science, London and New York, 1988, p. 466.CrossRefGoogle Scholar
  45. 45.
    A. Furumiya, Y. Akana, Y. Ushida, T. Masuda and A. Nakajima, Pure Appl. Chem. 57: 823 (1985).CrossRefGoogle Scholar
  46. 46.
    T. Dobroth and L. Erwin, Polym. Eng. Sci. 26: 62 (1986).CrossRefGoogle Scholar
  47. 47.
    W. F. Allen, SPE Tech. Papers 33: 211 (1987).Google Scholar
  48. 48.
    T. Dobroth and L. Erwin, SPE Tech. Papers 32: 843 (1986).Google Scholar
  49. 49.
    R. Edwards, TAPPI J. 70, no. 9: 139 (1987).Google Scholar
  50. 50.
    E. J. Kaltenbacher, J. K. Lund and R. A. Mendelson, SPE Joum., Nov. 1967, p. 55.Google Scholar
  51. 51.
    R. L. BalIman, Rheol. Acta 4: 137 (1965).CrossRefGoogle Scholar
  52. 52.
    A. Co, V. Iyengar and C. M. Lin, Xth Int. Congr. Rheol. 1: 278 (1988).Google Scholar
  53. 53.
    C. J. S. Petrie and M. M. Denn, A.I.Ch.E.J. 22: 209 (1976).Google Scholar
  54. 54.
    N. R. Anturkar and A. Co, J. Non-Newt. F!. Mech. 28: 287 (1988).zbMATHCrossRefGoogle Scholar
  55. 55.
    P. J. Lucchesi, E. H. Roberts and S. J. Kurtz, Plastics Engineering, May 1985, p. 87.Google Scholar
  56. 56.
    P. J. Lucchesi, E. H. Roberts and S. J. Kurtz, U.S. Patent 4,486, 377 (1984).Google Scholar
  57. 57.
    E. H. Roberts, P. J. Lucchesi and S. J. Kurtz, Adv. Polym. Technol. 6: 65 (1986).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • John M. Dealy
    • 1
  • Kurt F. Wissbrun
    • 2
  1. 1.Department of Chemical EngineeringMcGill UniversityMontrealCanada
  2. 2.Hoechst Celanese Research DivisionSummitUSA

Personalised recommendations