Advertisement

Role of Rheology in Extrusion

  • John M. Dealy
  • Kurt F. Wissbrun

Abstract

Extrusion is the most important single polymer processing operation. Virtually every pound of thermoplastic polymer is subjected to an extrusion process at some point in its conversion to a finished article. It is more amenable to theoretical analysis than some other processing operations for a number of reasons:
  1. 1.

    It is a continuous, steady state process, not discontinuous like injection molding

     
  2. 2.

    For the most common mode of operation there are no free surfaces within the extruder, so that boundary conditions can be prescribed on known surfaces, and

     
  3. 3.

    Viscoelastic behavior plays only a minor role, and viscous fluid models have been found adequate for the analysis.

     

Keywords

Shear Rate Melting Zone Leakage Flow Helix Angle Screw Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Rauwendaal, Polymer Extrusion, Hanser, New York, 1986.Google Scholar
  2. 2.
    M. J. Stevens, Extruder Principles and Operation,Elsevier Science Publishers, New York, 1985.Google Scholar
  3. 3.
    Z. Tadmor and I. Klein, Engineering Principles of Plasticating Extrusion, Van Nostrand, New York, 1970.Google Scholar
  4. 4.
    Z. Tadmor and C. Gogos, Principles of Polymer Processing, John Wiley & Sons, New York, 1979.Google Scholar
  5. 5.
    R. T. Fenner, in Computational Analysis of Polymer Processing, J. R. A. Pearson and S. M. Richardson, eds., Elsevier Science Publishers, New York, 1983.Google Scholar
  6. 6.
    L. P. B. M. Janssen, Twin Screw Extrusion, Elsevier Science Publishers, New York, 1978.Google Scholar
  7. 7.
    M. L. Booy, Polym. Eng. Sci. 21:93 (1981).CrossRefGoogle Scholar
  8. 8.
    S. Middleman, Fundamentals of Polymer Processing, McGraw-Hill, New York, 1977, p. 157.Google Scholar
  9. 9.
    J. M. McKelvey, Polymer Processing, John Wiley & Sons, New York, 1962.Google Scholar
  10. 10.
    L. V. Cancio, R. S. Joyner, and P. L. Balin, Plastics Technology 21:40 (1975).Google Scholar
  11. 11.
    M. Dimitrov and R. Hegele, Kunststoffe 61:815 (1971).Google Scholar
  12. 12.
    G. A. Kruder and J. T. Kim, SPE J. 29:49 (1973).Google Scholar
  13. 13.
    D. P. Isherwood, R. N. Pieries and D. Valamonte, Plastics and Rubber Processing and Applications 4:257 (1984).Google Scholar
  14. 14.
    W. H. Darnell and E. A. J. Mol, SPE J. 12:20 (1956).Google Scholar
  15. 15.
    B. H. Maddock, SPE J. 15:383 (1959).Google Scholar
  16. 16.
    Z. Tadmor, Polym. Eng. Sci. 6:185 (1966).CrossRefGoogle Scholar
  17. 17.
    J. T. Lindt, Polym. Eng. Sci. 25:585 (1985).CrossRefGoogle Scholar
  18. 18.
    J. F. Ingen Housz and H. E. H. Meijer, Polym. Eng. Sci. 21:352 (1981).CrossRefGoogle Scholar
  19. 19.
    C. Rauwendaal, Polym. Eng. Sci. 26:1245 (1986).CrossRefGoogle Scholar
  20. 20.
    B. Elbirli, J. T. Lindt, S. R. Gottgetreu and S. M. Baba, Polym. Eng. Sci. 23:86 (1983).CrossRefGoogle Scholar
  21. 21.
    J. F. Carley and J. M. McKelvey, Ind. Eng. Chem. 45:985 (1953).Google Scholar
  22. 22.
    C. Rauwendaal, Polym. Eng. Sci. 27:1065 (1987).Google Scholar
  23. 23.
    C. I. Chung, Polym. Eng. Sci. 24:626 (1984).CrossRefGoogle Scholar
  24. 24.
    B. H. Maddock, SPE J. 15:983 (1959).Google Scholar
  25. 25.
    D. G. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley, Reading, Massachusetts, 1973.Google Scholar
  26. 26.
    R. K. Mittal, V. B. Gupta and P. K. Sharma, Composites Sci. & Technology 31:295 (1988).CrossRefGoogle Scholar
  27. 27.
    J. M. Ottino and R. Chella, Polym. Eng. Sci. 23:357 (1983).CrossRefGoogle Scholar
  28. 28.
    L. Erwin, Polym. Eng. Sci. 18:572 (1978).CrossRefGoogle Scholar
  29. 29.
    L. Erwin and F. Mokhtarian, Polym. Eng. Sci. 23:49 (1983).CrossRefGoogle Scholar
  30. 30.
    J. A. Biesenberger, ed., Devolatilization of Polymers, Hanser Publications, New York, 1983.Google Scholar
  31. 31.
    K. Eise, H. Herrmann, S. Jakopin, U. Burkhardt and H. Werner, Adv. Plastics Tech. 1:18 (1981).CrossRefGoogle Scholar
  32. 32.
    R. J. Nichols, Modem Plastics, Sept. 1986, p. 90.Google Scholar
  33. 33.
    C. Rauwendaal, Polym. Eng. Sci. 21:1092 (1981).CrossRefGoogle Scholar
  34. 34.
    T. Sakai and N. Hashimoto, SPE (ANTEC) Tech. Papers 32:860 (1986).Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • John M. Dealy
    • 1
  • Kurt F. Wissbrun
    • 2
  1. 1.Department of Chemical EngineeringMcGill UniversityMontrealCanada
  2. 2.Hoechst Celanese Research DivisionSummitUSA

Personalised recommendations