Advertisement

Chemorheology of Reacting Systems

  • John M. Dealy
  • Kurt F. Wissbrun

Abstract

The term chemorheology was first introduced by Tobolsky et al. [1, 2] to describe their research on the “chemical stress relaxation” of cross-linked rubbers. They found that the stress in a stretched specimen decayed to zero over a long period of time, a behavior incompatible with the concept of a cross-linked structure. They concluded that cross-links had been gradually lost in the strained sample so that the apparent relaxation was actually due to a chemical change and was not a viscoelastic effect. More recently, the term has come to be used to describe the study of rheological changes occurring during the course of any chemical reaction.

Keywords

High Pressure Liquid Chromatography Dynamic Mechanical Analysis Relaxation Modulus Cure Reaction Plastics Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Tobolsky, I. B. Prettyman and J. H. Dillon, J. Appl. Phys. 15:324 (1944).CrossRefGoogle Scholar
  2. 2.
    R. D. Andrews, A. V. Tobolsky and E. E. Hauson, J. Appl. Phys. 17:352 (1946).ADSCrossRefGoogle Scholar
  3. 3.
    K. Murakami and K. Ono, Chemorheology of Polymers,Elsevier Scientific Publishing Co., New York, 1979.Google Scholar
  4. 4.
    Z. Kemblowski and J. Torzecki, Rheol. Acta22:34 (1983).zbMATHCrossRefGoogle Scholar
  5. 5.
    C. A. May, Editor, “Chemorheology of Thermosetting Polymers”, ACS Symposium Series, No. 227 (1983).Google Scholar
  6. 6.
    C. A. May, M. R. Dusi, J. S. Fritzen, D. K. Hadad, M. G. Maximovich, K. G. Thrasher and A. Wereta, Jr., ACS Symp. Series, No. 227, p. 1 (1983).CrossRefGoogle Scholar
  7. 7.
    R. J. Hinrichs, ACS Symp. Series, No. 227, p. 187 (1983).Google Scholar
  8. 8.
    D. M. Hoffman, ACS Symp. Series, No. 227, p. 169 (1983).Google Scholar
  9. 9.
    A. V. Tungare, G. C. Martin and J. T. Gotro, Polym. Eng. Sci. 28:1071 (1988).CrossRefGoogle Scholar
  10. 10.
    M. B. Roller, Polym. Eng. Sci. 26:432 (1986).CrossRefGoogle Scholar
  11. 11.
    S. P. Sawan, K. Muni and J. Figlan, SPE Tech. Papers35:1678 (1989).Google Scholar
  12. 12.
    C. D. Han and K.-W. Lem, ACS Symp. Series, No. 227, p. 201 (1983).CrossRefGoogle Scholar
  13. 13.
    S. J. Perry, J. M. Castro and C. W. Macosko,J. Rheol. 29:19 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    E. B. Richter and C. W. Macosko, Polym. Eng. Sci. 20:921 (1980).CrossRefGoogle Scholar
  15. 15.
    J. W. Blake, W. P. Yang, R. D. Anderson and C. W. Macosko, Polym. Eng. Sci. 27:1236 (1987).CrossRefGoogle Scholar
  16. 16.
    C. W. Macosko, Fundamentals of Reaction Injection Molding, Hanser, Munich, 1989.Google Scholar
  17. 17.
    L. T. Manzione, Polym. Eng. Sci. 21:1234 (1981).CrossRefGoogle Scholar
  18. 18.
    J. M. Castro and C. W. Macosko, A.I.Ch.E.J. 28:250 (1982).Google Scholar
  19. 19.
    R. R. Eley, J. Coatings Technol. 5, No. 718, 49 (Nov. 1984).Google Scholar
  20. 20.
    M. J. Hannon, D. Rhum and K. F. Wissbrun, J. Coatings Technol. 48: No. 621, p. 42 (1976).Google Scholar
  21. 21.
    Y. Otsubo, T. Amari, K. Watanabe and T. Nakamichi, J. Rheol. 31:251 (1987).ADSCrossRefGoogle Scholar
  22. 22.
    S. E. Orchard, Appl. Sci. Res. A 11:451 (1962).Google Scholar
  23. 23.
    P. J. Flory, Principles of Polymer Chemistry,Chapter 11, Cornell Univ. Press, Ithaca, NY, 1953.Google Scholar
  24. 24.
    J. Enns and J. K. Gillham, J. Appl. Polym. Sci. 2.8:2567 (1983).CrossRefGoogle Scholar
  25. 25.
    G. L. Hagnauer, P. J. Pearce, B. R. LaLiberte and M. E. Roylance, ACS Symp. Series, No. 227, p. 25 (1983).CrossRefGoogle Scholar
  26. 26.
    F. R. Volgstadt and C. L. Sieglaff, Polym. Eng. Sci. 14:143 (1974).CrossRefGoogle Scholar
  27. 27.
    J. E. Hess, Modern Plastics, Nov. 1971, p. 60.Google Scholar
  28. 28.
    ASTM D3123–72, “Standard Test Method for Spiral Flow of Low-Pressure Thermosetting Molding Compounds,” 1988 Annual Book of ASTM Standards, Vol. 8.03, p. 4.Google Scholar
  29. 29.
    P. J. Heinle, SPE Tech. Papers: 25:426 (1979); 26:447 (1980).Google Scholar
  30. 30.
    A. Hale, M. N. Garcia, C. W. Macosko and L. T. Manzione, SPE Tech. Papers 35:796 (1989).Google Scholar
  31. 31.
    S. Tonogai and S. Seto, Polym. Eng. Sci. 21:301 (1981).CrossRefGoogle Scholar
  32. 32.
    B. L. Lee, L. G. Pappas, V. L. Folt and C. E. Sitz, SPE Tech. Papers 35:1201 (1989).Google Scholar
  33. 33.
    M. T. Shaw, S. Burkert and D. W. Sundstrom, Rev. Sci. Instrum. 49:1597 (1978).ADSCrossRefGoogle Scholar
  34. 34.
    S. C. Malguarnera, D. R. Carroll and M. A. Colaluca, IEC Prod. Res. Dev. 23:103 (1984).CrossRefGoogle Scholar
  35. 35.
    J. M. Dealy, Rheometers for Molten Plastics,Van Nostrand Reinhold, New York, 1982, Sect. 7.5.Google Scholar
  36. 36.
    D. W. Sundstrom and S. J. Burkert, Polym. Eng. Sci. 21:1108 (1981).CrossRefGoogle Scholar
  37. 37.
    D. Harran and A. Laudouard, J. Appl. Polym. Sci. 32:6043 (1986).CrossRefGoogle Scholar
  38. 38.
    M. R. Kamal and M. E. Ryan, Polym. Eng. Sci. 20:859 (1980).CrossRefGoogle Scholar
  39. 39.
    ASTM D4473–85, “Standard practice for measuring the cure behavior of thermosetting resins using dynamic mechanical procedures.”Google Scholar
  40. 40.
    Y. Nabata, A. Mamada and H. Yamasaki, J. Appl. Polym. Sci. 35:155 (1988).CrossRefGoogle Scholar
  41. 41.
    R. P. White, Jr., Polym. Eng. Sci. 14:50 (1974).CrossRefGoogle Scholar
  42. 42.
    V. M. Gonzalez-Romero and C. W. Macosko, J. Rheol. 29:259 (1985).ADSCrossRefGoogle Scholar
  43. 43.
    I.-C. Choy and D. J. Plazek, J. Polym. Sci. B24:1303 (1986).CrossRefGoogle Scholar
  44. 44.
    J. A. Biesenberger, R. Kumar, R. Garritano and J. M. Starita, Polym. Eng. Sci. 25:301 (1985).CrossRefGoogle Scholar
  45. 45.
    J. A. Biesenberger and R. Kumar, Polym. Proc. Eng. 3:141 (1986).Google Scholar
  46. 46.
    D. Serrano and D. Harran, Polym. Eng. Sci. 29:531 (1989).CrossRefGoogle Scholar
  47. 47.
    J. K. Gillham, Polym. Eng. Sci. 19:676 (1979).CrossRefGoogle Scholar
  48. 48.
    C. Y. Yap and H. L. Williams, Polym. Eng. Sci. 22:254 (1982).CrossRefGoogle Scholar
  49. 49.
    W. X. Zukas, W. J. MacKnight and N. S. Schneider, ACS Symp. Series No. 227, p. 223 (1983).CrossRefGoogle Scholar
  50. 50.
    G. A. Senich, W. J. MacKnight and N. S. Schneider, Polym. Eng. Sci. 19:313 (1979).CrossRefGoogle Scholar
  51. 51.
    I. J. Goldfarb, C. Y. C. Lee and C. C. Kuo, ACS Symp. Series, No. 227, 49 (1983).Google Scholar
  52. 52.
    C. Y. C. Lee, C. C. Kuo and I. J. Goldfarb, ACS Symp. Series, No. 227, 61 (1983).Google Scholar
  53. 53.
    C. Y. C. Lee, J. Appl. Polym. Sci. 27:407 (1982).CrossRefGoogle Scholar
  54. 54.
    H. L. W. Chan and J. Unsworth, Eur. Polym. J. 21:377 (1985).CrossRefGoogle Scholar
  55. 55.
    W. J. Mikols and J. C. Seferis, ACS Symp. Series, No. 227, p. 95 (1983).CrossRefGoogle Scholar
  56. 56.
    S. A. Yaloff and W. J. Wrasidlo, J. Appl. Polym Sci. 16:2159 (1972).CrossRefGoogle Scholar
  57. 57.
    P. Hedvig, Dielectric Spectroscopy of Polymers, John Wiley & Sons, NY (1975).Google Scholar
  58. 58.
    S. Senturia and S. Garverick, US Patent No. 4,423,371.Google Scholar
  59. 59.
    S. Senturia and N. Sheppard, Adv. Polym. Sci. 80:1 (1986).Google Scholar
  60. 60.
    J. Gotro and M. Yandrasits, Polym. Eng. Sci. 29:278 (1989).CrossRefGoogle Scholar
  61. 61.
    J. W. Lane, R. K. Khatta and M. R. Dusi, Polym. Eng. Sci. 29:339 (1989).CrossRefGoogle Scholar
  62. 62.
    D. Kranbuehl, S. Delos, M. Hoff, P. Hoverty, W. Freeman and J. Godfrey, Polym. Eng. Sci. 29:285 (1989).CrossRefGoogle Scholar
  63. 63.
    R. W. Wetton, G. M. Foster, R. D. L. Marsh, J. C. Duncan and M. M. J. Blow, SPE Tech. Papers 35:1650 (1989).Google Scholar
  64. 64.
    M. R. Kamal, Polym. Eng. Sci. 14:231 (1974).Google Scholar
  65. 65.
    F. G. Mussatti and C. W. Macosko, Polym. Eng. Sci. 13:236 (1973).CrossRefGoogle Scholar
  66. 66.
    M. B. Roller, Polym. Eng. Sci. 15:406 (1975).CrossRefGoogle Scholar
  67. 67.
    J. D. Keenan, SAMPE Educ. Workshop, Sunnyvale, CA, 1980.Google Scholar
  68. 68.
    D.-S. Lee and C. D. Han, Polym. Eng. Sci. 27:955 (1987).CrossRefGoogle Scholar
  69. 69.
    M. R. Dusi, C. A. May and J. C. Seferis, ACS Symp. Series, No. 227, 301 (1983).Google Scholar
  70. 70.
    C. J. Kojima, M. E. Hushower and V. L. Morris, SPE (ANTEC) Tech. Papers32:344 (1986).Google Scholar
  71. 71.
    Y. A. Tajima and D. Crozier, Polym. Eng. Sci. 23:186 (1983).CrossRefGoogle Scholar
  72. 72.
    T. H. Hou, SPE Tech. Papers 31:1253 (1985).Google Scholar
  73. 73.
    K. Horie, I. Mita and H. Kambe, J. Polym. Sci. A-1 8:2839 (1970).CrossRefGoogle Scholar
  74. 74.
    S. D. Lipshitz and C. W. Macosko, Poly. Eng. Sci. 16:803 (1976).CrossRefGoogle Scholar
  75. 75.
    A. Y. Malkin et al., Polymer 25:778 (1984).CrossRefGoogle Scholar
  76. 76.
    C. Y. M. Tung and P. J. Dynes, J. Appl. Polym. Sci. 27:569 (1982).CrossRefGoogle Scholar
  77. 77.
    H. H. Winter and F. Chambon, J. Rheol. 30:367 (1986).ADSCrossRefGoogle Scholar
  78. 78.
    F. Chambon and H. H. Winter, J. Rheol. 31:683 (1987).ADSCrossRefGoogle Scholar
  79. 79.
    H. H. Winter, P. Morganelli and F. Chambon, Macromolecules 21:532 (1988).ADSCrossRefGoogle Scholar
  80. 80.
    J. E. Martin, D. Adolf and J. P. Wilcoxon, Polym. Preprints 31, No. 1, p. 83 (1989).Google Scholar
  81. 81.
    S. S. Labana, in Encyc. of Polym Sci. & Eng., pp 350–395, John Wiley & Sons, NY, 1986.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • John M. Dealy
    • 1
  • Kurt F. Wissbrun
    • 2
  1. 1.Department of Chemical EngineeringMcGill UniversityMontrealCanada
  2. 2.Hoechst Celanese Research DivisionSummitUSA

Personalised recommendations