Skip to main content

Damage Spreading: The Search for Multifractality & Multiscaling

  • Chapter
Correlations and Connectivity

Part of the book series: NATO ASI Series ((NSSE,volume 188))

  • 198 Accesses

Abstract

The Kauffman model is used as an example of a cellular automaton with fractal and multifractal properties. A close connection between the Kauffman model and percolation is established and we are able to describe a general class of automata—the Ising cellular automata. The fractal properties of this family are numerically in the same universality class as the Kauffman model and we assume that they also share the same multifractal properties. The search for multifractal and multiscaling features in their thermodynamic counterparts, the Ising and percolation models, is in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General References on the Kauffman Model

  1. S. A. Kauffman J. Theor. Biol. 22, 437 (1969); Physica 10D, 145 (1984) in Disordered Systems and Biological Organization, eds E. Bienenstock, F. Fogelman Soulie and G. Weisbuch (Berlin, Springer, 1989).

    Article  MathSciNet  Google Scholar 

  2. D. Stauffer, Phil. Mag. B 56, 901 (1987).

    Article  Google Scholar 

Critical Phenomena and Renormalization Group

  1. H. E. Stanley, Introduction to Phase transitions and Critical Phenomena (Oxford U Press, 1971).

    Google Scholar 

  2. K. G. Wilson, Rev. Mod. Phys. 55, 583 (1983).

    Article  ADS  Google Scholar 

Critical Phenomena in the Kauffman Model

  1. B. Derrida and D. Stauffer, Europhys. Lett. 2, 739 (1986).

    Article  ADS  Google Scholar 

  2. L. De Arcangelis, J. Phys. A 20, L369 (1987).

    Article  Google Scholar 

  3. P. M. Lam, J. Stat. Phys. 50, 1263 (1988).

    Article  ADS  Google Scholar 

  4. A. Hansen, J. Phys. A 21, 2481 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. L. R. da Silva and H. J. Herrmann, J. Stat. Phys. 52, 463 (1988).

    Article  ADS  Google Scholar 

  6. A. Coniglio, D. Stauffer and N. Jan, J. Phys A 20, L1103 (1987).

    Article  ADS  Google Scholar 

  7. N. Jan, J. Phys. A 21, L899 (1988).

    Article  ADS  Google Scholar 

Ising Cellular Automata

  1. L. de Arcangelis and A. Coniglio, Europhys. Lett. 7, 113 (1988).

    Article  ADS  Google Scholar 

  2. A. B. MacIsaac, D. L. Hunter, M. Corsten and N. Jan, Phys. Rev. A (submitted).

    Google Scholar 

  3. N. Jan, J. Phys. (France) 51, 201 (1990).

    Article  MathSciNet  Google Scholar 

  4. A. B. MacIsaac and D. L. Hunter, J. Phys. A (submitted).

    Google Scholar 

Monte Carlo Method

  1. K. Binder (ed), Applications of the Monte Carlo Method in Statistical Physics (Springer-Verlag, Berlin, 1984).

    MATH  Google Scholar 

Damage Spreading in Thermodynamic Systems

  1. H. E. Stanley, D. Stauffer, J. Kertesz and H. J. Herrmann, Phys. Rev. Lett. 59, 2326 (1987).

    Article  ADS  Google Scholar 

  2. U. M. S. Costa, J. Phys. A 20, L583 (1987).

    Article  ADS  Google Scholar 

  3. B. Derrida and G. Weisbuch, Europhys. Lett. 4, 657 (1987).

    Article  ADS  Google Scholar 

  4. A. Coniglio, L. de Arcangelis, H. J. Herrmann and N. Jan, Europhys. Lett. 8, 315 (1989).

    Article  ADS  Google Scholar 

  5. L. de Arcangelis, A. Coniglio and H. J. Herrmann, Europhys. Lett. 9, 749 (1989).

    Article  ADS  Google Scholar 

  6. A. M. Mariz and H. J. Herrmann, J. Phys. A 22, L1081 (1989).

    Article  ADS  Google Scholar 

  7. A. M. Mariz, H. J. Herrmann and L. de Arcangelis, J. Stat. Phys. 50, 1043 (1990).

    Article  ADS  Google Scholar 

  8. P. H. Poole and N. Jan, J. Phys. A 23, L453 (1990).

    Article  ADS  Google Scholar 

Leath Algorithm and Chemical Distance for Percolation

  1. P. L. Leath, Phys. Rev. B 14, 5046 (1976).

    Article  ADS  Google Scholar 

  2. Z. Alexandrowicz, Phys. Lett. 80A, 284 (1980).

    MathSciNet  ADS  Google Scholar 

  3. S. Havlin and R. Nossal, J. Phys A 17, 1427 (1984).

    Google Scholar 

  4. S. Havlin, B. Trus, G. H. Weiss and D. Ben-Avraham, J. Phys A 18, L247 (1985).

    Article  ADS  Google Scholar 

  5. M. Corsten, N. Jan and R. Jerrard, Physica A 156, 781 (1989).

    Article  ADS  Google Scholar 

Multiscaling

  1. A. Coniglio and M. Marinaro, Physica 54, 261 (1971).

    Article  ADS  Google Scholar 

  2. A. Coniglio and M. Zannetti, Europhys. Lett. 10, 575 (1989).

    Article  ADS  Google Scholar 

  3. A. Coniglio and M. Zannetti, Physica A 163, 325 (1990).

    Article  ADS  Google Scholar 

  4. L. de Arcangelis and H. J. Herrmann, “On the scaling properties of various invasion models,” SPHT, Saclay preprint, 1990.

    Google Scholar 

Multifractals

  1. B. B. Mandelbrot, J. Fluid Mech. 62, 331 (1974).

    Article  ADS  MATH  Google Scholar 

  2. H. G. E. Hentschel and I. Procaccia, Physica 8D, 435 (1983).

    MathSciNet  ADS  Google Scholar 

  3. U. Frisch and G. Parisi, in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics Int’l School of Physics, “Enrico Fermi” Courses LXXXVIII, eds M. Ghil, R. Benzi and G. Parisi (North-Holland, New York, 1983).

    Google Scholar 

  4. A. Coniglio, in Fractals in Physics, ed L. Pietronero and E. Tosatti (North Holland, Amsterdam, 1986).

    Google Scholar 

  5. T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia and B. Shraiman, Phys. Rev. A 33, 1141 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. For a recent review (with special emphasis on DLA) with a more complete guide to the early literature see H. E. Stanley, A. Bunde, S. Havlin, J. Lee, E. Roman and S. Schwarzer, in “C. Domb 70th Birthday,” Physica A 168, 23 (1990).

    Google Scholar 

Dynamic Scaling

  1. P. C. Hohenberg and B. I. Halperin, Rev. of Mod. Phys. 49, 435 (1977).

    Article  ADS  Google Scholar 

  2. S. K. Ma, Modern Theory of Critical Phenomena (W. A. Benjamin, Reading MA, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Jan, N., Poole, P.H., Mac Isaac, A.B., Hunter, D.L., Manna, S.S. (1990). Damage Spreading: The Search for Multifractality & Multiscaling. In: Stanley, H.E., Ostrowsky, N. (eds) Correlations and Connectivity. NATO ASI Series, vol 188. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2157-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2157-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1011-2

  • Online ISBN: 978-94-009-2157-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics