Skip to main content

Physiology of Exopolysaccharide Production

  • Chapter
Novel Biodegradable Microbial Polymers

Part of the book series: NATO ASI Series ((NSSE,volume 186))

Abstract

Rapid metabolite production necessitates rapid fluxes of both carbon and energy through the metabolic system of an organism. The capacity to process these fluxes rapidly appears to be inversely related to the growth efficiency of the producing organism. In general three main classes of metabolites may be distinguished. Exopolysaccharides, where both the oxidation state and the rate of production appears to be inversely related to the growth efficiency of the producing organism and maximal production occurs when both carbon and energy flux is integrated. These considerations should be taken into account when molecular genetics is used to bring about changes in the chemical composition/properties of these molecules. The production of metabolites such as organic acids is accompanied by the net generation of reducing equivalents and/or ATP and their rate of production may be limited by the capacity of the producing organism to dissipate this energy. For metabolites like biosurfactants that contain both sugar and fatty acid moieties production from a single carbon source is unfavourable and dual substrates may offer a means of boosting both specific rates of production as well as final broth concentrations. These considerations suggest that there may be scope for improving the specific rates of production of existing metabolites such as amino acids and PHA by exploiting organisms with growth efficiencies that are lower than those of process organisms currently in use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yalpani, M. and Sandford, P.A. (1987) Commercial Polysaccharides: Recent Trends and Developments. Industrial Polysaccharides: Genetic Engineering, Structure/Property Relations and Applications, pp. 311–335. Ed. M. Yalpani. Elsevier Science Pub., Amsterdam.

    Google Scholar 

  2. Kang, K.S. and Cottrell, I.W. (1979) Polysaccharides. In Microbial Technology, Vol. 1, pp. 197–481. Ed. H.J. Peppler and D. Perlman, New York, Academic Press.

    Google Scholar 

  3. Sutherland, I.W. (1982) Biosynthesis of microbial exo-polysaccharides. Advances in Microbial Physiology 23, pp. 80–150.

    Article  Google Scholar 

  4. Paul, F., Morin, A and Monsan, P. (1986). Microbial polysaccharides with actual potential industrial applications. Biotech. Adv. Vol. 4, pp. 245–259.

    CAS  Google Scholar 

  5. Sutherland, I.W. and Ellwood, D.C. (1979). Microbial exopolysaccharides - Industrial polymers or current and future potential. In. Symp. 29, pp. 107–150. Soc. Gen. Microbiol. Cambridge University Press.

    Google Scholar 

  6. Linton, J.D. (1990). The relationship between metabolite production and the growth efficiency of the producing organism. FEMS Microbiology Reviews, 75, pp. 1–18.

    Article  CAS  Google Scholar 

  7. Kell, D.B. (1989) Control analysis of microbial growth and productivity in Soc. Gen. Microbiol Symp. 44, Eds. S. Baumberg, I. Hunter and M. Rhodes, pp. 61–93.

    Google Scholar 

  8. Pirt, S.J. (1965) The maintenance energy of bacteria in growing cultures. Proc. Royl. Soc. (Series B) 163, 224–231.

    Article  CAS  Google Scholar 

  9. Stouthamer, A.H. and Bettenhaussen, C.W. (1973) Utilization of energy for growth and Maintenance in continuous and batch cultures of microorganisms. A re-evaluation of the method for determining ATP production by measuring molar growth yields. Biochim et Biophys. Acta, 301, 53–70.

    CAS  Google Scholar 

  10. Linton, J.D., Evans, M., Jones, D.S. and Gouldney, D.N. (1987) Exocellular succinoglucan production by Agrobacterium radiobacter NC1B 11883. J. Gen Microbiol. 133, 2961–2969.

    CAS  Google Scholar 

  11. Linton, J.D., Gouldney, D. and Woodard, S. (1988) Efficiency and stability of exopolysaccharide production from different carbon sources by Erwinia herbicola. J. Gen. Microbiol. 134, 1913–1921.

    CAS  Google Scholar 

  12. Rye, A.J., Drozd, J.W., Jones, C.W. and Linton, J.D. (1988) Growth efficiency of Xanthomonas in continuous culture. J. Gen. Microbiol. 134, 1055–1061.

    CAS  Google Scholar 

  13. Jones, C.W. (1977) Aerobic respiratory systems in bacteria in Symposium of Soc. Gen. Microbiol. 27, 23–59.

    CAS  Google Scholar 

  14. Jones, C.W. (1988) Bioenergetics of aerobic bacteria, in 8th Int. Biotechnol. Symp. Vol. 1, pp 43–55 (Durand, G., Bobichon, L., Florent, J. (Eds.). Societe Francaise de Microbiologie, Paris.

    Google Scholar 

  15. Jarman, T.R. and Pace, G.W. (1984) Energy requirements for microbial exopolysaccharide synthesis. Arch. Microbiol. 137, 231–235.

    CAS  Google Scholar 

  16. Linton, J.O., Watts, P.D., Austin, R.M., Haugh, D.E. and Niekus, H.G.D. (1986) The energetics and kinetics of extracellular pollysaccharide production from methanol by microorganism possessing different pathways of C-1 assimilation. J. Gen. Microbiol. 132, 779–788.

    CAS  Google Scholar 

  17. Linton, J.D., Jones, D.S. and Woodard, S. (1987) Factors that control the rate of exopolysaccharide production by Agrobecterium radiobacter NC1B 11883. J. Gen. Microbiol. 133, 2979–2987.

    CAS  Google Scholar 

  18. Anderson, A.J., Hacking, A.J. and Dawes, E.A. (1987). Alternative pathway for the biosynthesis of alginate from fructose and glucose in Pseudomonas mendocina and Azotobacter vinelandii. J. Gen. Microbiol. 133, 1045–1052.

    CAS  Google Scholar 

  19. Mien, F.A., Jarman, T.R. and Righelato, R.C. (1978). Biosynthesis of exopolysaccharide by Pseudamonas aeruginosa. J. Bacteriol. 134, 418–422.

    Google Scholar 

  20. Grinberg, T.A., Kosenko, L.Y. and Malashenko, R. Yu (1984) Formation of exopolysaccharide by methylotrophic micro-organisms Mikrobiologischeskii Zhurn. 46, 22–26.

    CAS  Google Scholar 

  21. Linton, J.D. and Rye, A.J. (1989) The relationship between the energetic efficiency in different micro-organisms and the rate and type of metabolite over-production. J. Ind. Microbiol. 4, 85–96.

    Article  CAS  Google Scholar 

  22. Eveleigh, D.E. (1973) Microbiol monosaccharides and polysaccharides in Hancbook of Microbiology (Laskin, A.I., Lechevalier, H.A. Eds.) pp 89–96 CRC Press, Cleveland.

    Google Scholar 

  23. Kola, M.R., Aharonowitz, I.Y., Bolock, J.D., Chakrabarty, A.M., Hopwood, D.A., Mathiasson, B., Morris, J.G., Neyssel, 0.M. and Sahm, H. (1987) Microbiology and Industrial Products. Group Report in Biotechnology: Potentials and Limitations (Dahlem Konfevenze 1986) (Silver S. Ed.) pp 71–81 Springer Verlag, Berlin.

    Google Scholar 

  24. Stouthamer, A.H. and van Verseveld, H.W. (1985). In Comprehensive Biotechnology, Vol. 1 (Moo-Young, M. Ed.) pp 215–238, Pergamon Press, Oxford.

    Google Scholar 

  25. Weenk, G., Oijve, W. and Harder, W. (1984) Ketogluconate formation by Gluconobacter species. Appl. Microbiol. Biotechnol. 20, 400–405.

    CAS  Google Scholar 

  26. Linton, J.D., Austin, R.N. and Haugh, D.E. (1984). The kinetics and physiology of stipitatic acid and gluconate production by carbon sufficient cultures of Pencilliun stipitatun growing in continuous culture. Biotechnol. Bioeng. XXVI, 1455–1464.

    Google Scholar 

  27. Neijssel, O.M. (1977) The effect of 2,4-dinitrophenol on the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture. FEMS Lett. 1: 47–50.

    Article  CAS  Google Scholar 

  28. Heuting, S. and Tempest, D.W. (1977) Influence of acetate on the growth of Candida utilis in continuous culture. Arch. Microbiol. 115, 73–78.

    Google Scholar 

  29. Linton, J.D., Griffiths, J. and Gregory, M. (1981) The effect of mixtures of glucose and formate on the yield and respiration of a chemostat culture of Beneckea natriegens. Arch. Microbiol. 129, 119–122.

    Article  CAS  Google Scholar 

  30. Kristiansen, B. and Charley, R. (1981) Continuous process for production of citric acid. In Advances in Biotechnology 1: Proceedings of the 6th International Fermentation Symposium (Moo-Young, M. Ed.) Pergamon Press, Toronto.

    Google Scholar 

  31. Miall, L.M. (1972) Stimulatory effect of organic acids in citric acid fermentation. British Patent Specification 1293786.

    Google Scholar 

  32. Tanaka, K., Iwasaki, T. and Kinoshita, S. (1960) Studies on L-glutamic acid fermentation. Part 5. Biotin and L-glutamic acid accumulation by bacteria. J. Agric. Chem. Soc. (Japan) 34, 593–600.

    CAS  Google Scholar 

  33. Tanaka, K. Machida-Shi, K. and Yamaguchi, K. (1969) Process for producing L-glutamic acid and alpha-ketoglutaric acid. US Patent Office 3,450,599.

    Google Scholar 

  34. Kinoshita, S., Vdaka, S. and Akita, S. (1961) Method of producing L-glutamic acid by fermentation. US Patent 3,003,925.

    Google Scholar 

  35. Nakayama, K. (1976) The production of amino-acids. Proc. Biochem. March, 4–9.

    Google Scholar 

  36. Nakayama, K. (1986) Breeding of amino-acid producing mutants, in Biotechnology of amino acid production (K. Aida, Chibala, I, Nakayama, K. and Yamada, H. (Eds.) Progress in Industrial Microbiology 24, 3–33 Elsevier, Amsterdam.

    Google Scholar 

  37. Hoischen, C. and Cramer, R. (1989). Evidence for an efflux carrier system involved in the secretion of glutamate by Corynebacterium olutamicum. Arch. Microbiol. 151, 342–347.

    Article  CAS  Google Scholar 

  38. Linton, J.D. and Musgrave, S.G. (1983) Product formation by a nitrogen-limited culture of Beneckea natriegens in a chemostat in the presence of excess glucose. Eur. J. Appl. Microbiol. Biotechnol. 18, 24–28.

    Article  CAS  Google Scholar 

  39. Farrand, S.G., Jones, C.W., Linton, J.D. and Stephenson, R.J. (1983) The effect of temperature and pH on the growth efficiency of the thermoacidophilic bacterium Baccillus acidocaldarius in continuous culture. Arch. Microbiol. 135, 276–283.

    CAS  Google Scholar 

  40. Linton, J.D. (1988) Potential of dual substrates for biomass and metabolite production in Proceedings of the Working Party on Microbial Physiology, Mixed and Multiple Substrates and Feedstocks. Zurich.

    Google Scholar 

  41. Cooper, D.G. and Paddock, D.A. (1984). Production of a biosurfactant from Torulopsis bombicola Appl. Environ. Microbiol. 47, 173–176.

    CAS  Google Scholar 

  42. Cornish, A., Greenwood, J.A. and Jones, C.W. (1988). Binding protein dependent glucose transport by Agrobacterium radiobacter grown in glucose limited continuous culture. J. Gen. Microbiol. 134, 3099–3110.

    CAS  Google Scholar 

  43. Cornish, A., Greenwood, J.A. and Jones, C.W. (1988) The relationship between glucose transport and the production of succinoglucan exopolysaccharide by Agrobacterium radiobacter. J. Gen. Microbiol. 134, 3111–3122.

    CAS  Google Scholar 

  44. Drozd, J.W. (1978). Respiration and energy conservation in Azotobacter vinelandii. FEMS Microbiol. Lett. 3, 47–49.

    Article  CAS  Google Scholar 

  45. Nagai, S. and Aibe, S. (1972). Reassessment of maintenance energy and uncoupling in the growth of Azotobacter vinelandii. J. Gen. Microbiol. 73, 531–538.

    CAS  Google Scholar 

  46. Deavin, L., Jarman, T.R., Lawson, C.J., Righelato R.C. and Slocambe, S. (1977). The production of alginic acid by Azotobacter vinelandii in batch and continuous culture. In: Extra-cellular Microbial Polysaccharides (Sandford, P.A. and Laskin, A. eds.), pp 14–26. American Chemical Society, Washington, D.C.

    Google Scholar 

  47. Betlack, M.R., Campege, M.A., Doherty, D.H., Hassler, R.A., Henderson, N.M., Vanderslice, R.W., Morelli, J.D. and Ward, M.B. (1987) Genetically engineered polymers: manipulation of xanthan biosynthesis. In Industrial Polysaccharides. Program in Biotechnology, Vol. 3 (Yalpeni, M. Ed.) pp 35–50, Elsevier, Amsterdam.

    Google Scholar 

  48. Phillips, R.R. and Lawford, N.G. (1983). Theoretical maximum and observed product yield associated with curdlan production by Alcaligenes faecatis. Can. J. Microbial. 29, 1270–1276.

    Article  CAS  Google Scholar 

  49. Davis, E.N., Rhodes, R.A., Shulke, R.H. (1965) Fermentative production of exocellular glucans by fleshy fungi. Appl. Microbial 13: 267–271.

    CAS  Google Scholar 

  50. Cadmus, M.C., Lagoda, A.A. and Anderson, R.F. (1962) Production of a new polysaccharide with Cryptoccus taurenti var flavescens. Appl. Microbial. 10, 152–156.

    Google Scholar 

  51. Takayame, T., Endo, F., Nozawa, T., Masuda, Y, Mori, M. and Kanayama, T. (1980) Process for producing a polysaccharide using Pseudomonas polysaccharogenes M-30. US Patent 4,230,800.

    Google Scholar 

  52. Cadmus, M.C. Gasdorf, H., Lagoda, A.A., Anderson, R.F. and Jackson, R.W. (1963). New bacterial polysaccharide from Arthrobecter. Appl. Microbial. 11, 488–492.

    CAS  Google Scholar 

  53. Jean, A. (1964) Extracellular microbial polysaccharides: new hydro colloids having both fundamental and practical properties. In Water-soluble Polymers, Plenum Press, New York.

    Google Scholar 

  54. Hacking, A.J., Taylor, I.W.F., Jarman, T.R. and Govan, J.R.W. (1983) Alginate biosynthesis by Pseudomonas mendocina. J. Gen. Microbial. 129, 3473–3480.

    CAS  Google Scholar 

  55. Kang, K.S., Veeder, G.T. and Richey, D.D. (1981) Polysaccharide and bacterial fermentation process for its preparation. US Patent 4,286,059.

    Google Scholar 

  56. Olije, W. and Kok, J.J. (1979) Analysis of growth of Gluconobacter oxydans in chemostat culture. Arch. Microbial. 121, 29–297.

    Article  Google Scholar 

  57. Frankena, J., van Verseveld, H.W. and Stouthamer, A.H. (1985) A continuous culture study of the bioenergetic aspects of growth and production of exocellutar protease in Bacillus licheniformis. Appl. Microbial. Biotechnol. 22, 169–171.

    CAS  Google Scholar 

  58. Sardinas J.L. and Ferry, G. (1973) Fermentation process for the production of citric acid. US Patent Office 3,708,399.

    Google Scholar 

  59. Guerra-Santos, L., Kappeli, O. and Fiechter, A. (1984). Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl. Environ. Microbial. 48, 301–305.

    CAS  Google Scholar 

  60. Ratledge, C. (1978) Lipids and fatty acids. In Economic Microbiology, Vol. 2 (Rose, A.E. Ed.) pp 263–302, Academic Press, London.

    Google Scholar 

  61. Schlegel, H.G. and Lafferty, R.M. (1971) Novel energy and carbon sources. Production of biomass from hydrogen and carbon dioxide. Adv. Biochem. Eng. 1, 143–168.

    Article  CAS  Google Scholar 

  62. Glazebrook, J. and Walker, G.C. (1989) A novel exopolysaccharide can function in place of the calcafluor-binding exopolysaccharide in nodulation of Alfalfa by Rhizobium meliloti. Cell, 661–672.

    Google Scholar 

  63. Doherty, D., Leigh, J.A., Glazebrook, J. and Walker, G.C. (1988) Rhizobium meliloti acidic calcafluor-binding exopolysaccharide. J. Bacteriol. 170, 4249–4256.

    CAS  Google Scholar 

  64. Deretic, V., Gill, J.F. and Chakrabarty, A.M. (1987) Alginate biosynthesis: A model system for gene regulation and function in Pseudowons. Biotechnol. 5, 469–477.

    Article  CAS  Google Scholar 

  65. Deretic, V., Dikshit, R., Konyecsni, W.M., Chakrabarty, A.M. and Misra, T.K. (1989) The alg R Gene, which regulates nucoidy in Pseadonanas aeruoinosa, belongs to a class of environmentally responsive genes. J. Bacteriol. 3, 1278–1283.

    Google Scholar 

  66. Sinskey, A.J., Easson, D.D. and Rha, C.K. (1988) Method to control and produce novel biopolymers. US Patent 891,136.

    Google Scholar 

  67. Hoischen, C. and Kramer, R. (1990). Membrane alteration is necessary but not sufficient for effective glutamate secretion in Corynebacteriun olutamicum. J. Bacteriol. 172, 3409–3416.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Linton, J.D. (1990). Physiology of Exopolysaccharide Production. In: Dawes, E.A. (eds) Novel Biodegradable Microbial Polymers. NATO ASI Series, vol 186. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2129-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2129-0_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7458-2

  • Online ISBN: 978-94-009-2129-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics