Skip to main content

The Physiological Role of Inorganic Polyphosphates in Microorganisms: Some Evolutionary Aspects

  • Chapter
Novel Biodegradable Microbial Polymers

Part of the book series: NATO ASI Series ((NSSE,volume 186))

Abstract

The paper presents experimental and literature data on the metabolism of inorganic polyphosphates (PolyP) in some pro- and eukaryotic microorganisms. Data are given that support the idea of various sets of enzymes metabolizing PolyP in particular compartments of the cell and at various stages of evolution. On this basis it is postulated that the physiological role of PolyP in the evolution of the microbial world underwent significant changes. In prokaryotic microorganisms PolyP were, apparently, primarily involved in bioenergetic processes, being the acceptors and donors of activated phosphate groups. In eukaryotic microorganisms one of the vital functions of PolyP is phosphate accumulation and involvement in ionic homeostatis regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kulaev, I.S. (1975) Biochemistry of Inorganic Polyphosphates, Rev. Physiol. Biochem. Pharmacol. 73, 131–158.

    Article  CAS  Google Scholar 

  2. Kulaev, I.S. (1979) The Biochemistry of Inorganic Polyphosphates, J. Wiley and Sons, Chichester, New York.

    Google Scholar 

  3. Kulaev, I.S. and Vagabov, V.M. (1983) Polyphosphate metabolism in microorganisms, Adv. Microb. Physiol. 24, 83–171.

    Article  CAS  Google Scholar 

  4. Kulaev, I.S. (1985) Some Aspects of Environmental Regulation of Microbial Phosphorus Metabolism. In: Environmental Regulation of Microbial Metabolism (Eds I.S. Kulaev, E.A. Dawes and D.W. Tempest ), pp. 1–25. Academic Press Inc. Orlando, Florida.

    Google Scholar 

  5. Kulaev, I.S. (1971) Inorganic polyphosphates in evolution of phosphorus metabolism. In: Molecular Evolution (Eds R. Buvet and C. Ponnamperuma ) vol. 1, pp. 458–465, North-Holland, Amsterdam.

    Google Scholar 

  6. Kulaev, I.S. (1973) Phosphotransferase reactions in the inorganic polyphosphate metabolism. In: Reaction mechanism and control properties of phosphotranferases (Eds E. Hoffmann and S. Rappoport ) pp. 36–48, Akademie-Verlag, Berlin.

    Google Scholar 

  7. Kulaev, I.S., Vagabov, V.M. and Shabalin, Yu.A. (1987) New data on biosynthesis of polyphosphates in yeasts. In: Phosphate metabolism and cellular regulation in microorganisms (Eds A. Torriani-Gorini, F.G. Rothman, S. Silver, A. Wright, E. Yagil ) pp. 233–238, American Society for Microbiology, Washington D.C.

    Google Scholar 

  8. Skorko, K. (1989) Polyphosphate as a source of phosphoryl group in protein modification in archaebacterium Sulfolobus acidocaldarius. Biochimie 71, 9–10.

    Article  Google Scholar 

  9. Tsutsui, K. (1986) Tripolyphosphate is an alternative phosphodonor of the selective protein phosphorylation of liver microsomal membrane. J. Biol. Chem. 261, 2645–2656.

    CAS  Google Scholar 

  10. Mansurova, S.E. (1989) Inorganic pyrophosphate in mitochondrial metabolism. Biochim. Biophys. Acta 977, 237–247.

    Article  CAS  Google Scholar 

  11. Mansurova, S.E., Shama, A.M., Sokolovski, V.Yu. and Kulaev, I.S. (1975) High-molecular polyphosphates of rat liver nuclei their function during liver regeneration. Dokl. AN SSSR 225, 717–720 (in Russian).

    CAS  Google Scholar 

  12. Offenbacher, S. and Kline (1980) Polyphosphate in rat liver nuclei. Federation Proceedings 39, 2198.

    Google Scholar 

  13. Offenbacher, S. and Kline (1984) Evidence for polyphosphate in phosphorylated nonhistone nuclear proteins. Arch. Biochem. Biophys. 231, 114–123.

    Article  CAS  Google Scholar 

  14. Kjeldstood, B., Heldal, M., Nissen, H., Bergen, A.S., and Evjen, K. (1990) Changes in polyphosphate composition and localization in Propionibacterium aches after near-ultraviolet irradiation. Personal communication.

    Google Scholar 

  15. Greenfield, N.J., Hussain, M. and Lenard, J. (1987). Effects of growth state and amines on cytoplasmic and vacuolar pH, phosphate and polyphosphate levels in Saccharomyces cerevisiae: a 31P-nuclear magnetic resonance study. Biochim. Biophys. Acta 926, 205–214.

    CAS  Google Scholar 

  16. Beauvoit, B., Rigoulet, M., Guerin, B. and Canioni, P. (1989) Poly-phosphates as a source of high energy phosphates in yeast mitochondria: a 31P NMR study, Federation of European Biochemical Societies Letters 252, 17–22.

    Article  CAS  Google Scholar 

  17. Duck-Cheul Ok and Hynn-Soon Lee (1987) Polyphosphate formation from pyrophosphate in intact cells of a photosynthetic bacterium Rhodospirillum rubrum, Plant and Cell Physiol. 28, 495–502.

    Google Scholar 

  18. Tijssen, J.P.F. and van Steveninck, J. (1984) Detection of a yeast polyphosphate fraction localized outside the plasma membrane by the method of phosphorus-31 nuclear magnetic resonance. Biochem. Biophys. Res. Communs. 119, 447–451.

    Article  CAS  Google Scholar 

  19. Vagabov, V.M., Chemodanova, O.V. and Kulaev, I.S. (1990) Effect of inorganic polyphosphates on negative charge of yeast cell wall. Dokl. AN SSSR, in press (in Russian).

    Google Scholar 

  20. Schuddemat, J., de Boo, R., van Leeuwen, C.C.M., van den Brock, P.J.A. and van Steveninck, J. (1989) Polyphosphate synthesis in yeast Biochim. Biophys. Acta 100, 191–198.

    Google Scholar 

  21. Shabalin, Yu. A., and Kulaev, I.S. (1989) Solubilization and properties of yeast dolichylpyrophosphate: polyphosphate phosphotransferase. Biokhimiya 54, 6875 (in Russian).

    Google Scholar 

  22. Lennarz, W.J. (1987) Protein glycosylation in the endoplasmatic reticulum: current topological issues. Biochemistry 26, 7205–7210.

    Article  CAS  Google Scholar 

  23. Andreeva, N.A., Okorokov, L.A. and Kulaev, I.S. (1990) Extraction and some properties of polyphosphatase and pyrophosphatase from Saccharomyces carlsbergensis. Prikl. Biokhim. Mikrobiol. 26, 307–312 (in Russian).

    CAS  Google Scholar 

  24. Andreeva, N.A., Okorokov, L.A. and Kulaev, I.S. (1990) Purification and some properties of cell wall polyphosphatase from Saccharomyces carlsbergensis, Biokhimiya 55, 1097–1103 (in Russian).

    Google Scholar 

  25. Trilisenko, L.V., Iliyinskaya, O.N., Vagabov, V.M. and Kulaev, I.S. (1985) Inorganic polyphosphate and polyphosphate phosphohydrolase in mycelial strains and ‘slime’ variants of Neurospora crassa. Biokhimiya 50, 1120–1126 (in Russian).

    CAS  Google Scholar 

  26. Trilisenko, L.V., Vagabov, V.M. and Kulaev, I.S. (1985) The detection and intracellular localization of two polyphosphate phosphohydrolases with different substrate specificity in a `slime’ variant of Neurospora crassa. Dokl. AN SSSR 220, 763–765 (in Russian).

    Google Scholar 

  27. Durr, M., Urech, K., Boller, Th., Wiemken, A., Schwenke, J. and Nagy, M. (1979) Sequestration of arginine by polyphosphate in vacuoles of yeast Saccharomyces cerevisiae, Arch. Microbiol. 121, 169–175.

    Google Scholar 

  28. Vagabov, V.M., Trilisenko, L.V., Krupyanko, V.I., Ilchenko, V.Ya. and Kulaev, I.S. (1990) Does intracellular arginine stimulate vacuolar polyphosphate phosphohydrolase of Neurospora crassa? Dokl. AN SSSR (in press) (in Russian).

    Google Scholar 

  29. Westenberg, B., Boller, Th. and Wiemken, A. (1989) Lack of arginine-and polyphosphate-storage pools in a vacuole-deficient mutant (end 1) of Saccharomyces cerevisiae. Federation of European Biochemical Societies Letters 254, 133–136.

    Article  CAS  Google Scholar 

  30. Cramer, C.L., Vaughn, L.E. and Davis, R.H. (1980) Basic amino acids and inorganic polyphosphates in Neurospora crassa: Independent regulation of vacuolar pools. J. Bacteriol. 142, 945–952.

    CAS  Google Scholar 

  31. Van Groenestijn, J.W., Bentvelsen, M.M.A., Deinema, M.M. and Zehnder, A.J.B. (1989) Polyphosphate-degrading enzymes in Acinetobacter spp. and activated sludge. Appl. Environm. Microbiol. 55, 219–223.

    Google Scholar 

  32. Wood, H.G. and Clark, J.E. (1988) Biological aspects of inorganic polyphosphates. Annu. Rev. Biochem. 57, 235–260.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kulaev, I.S. (1990). The Physiological Role of Inorganic Polyphosphates in Microorganisms: Some Evolutionary Aspects. In: Dawes, E.A. (eds) Novel Biodegradable Microbial Polymers. NATO ASI Series, vol 186. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2129-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2129-0_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7458-2

  • Online ISBN: 978-94-009-2129-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics