Skip to main content

Anther Culture Selection to Enhance Snow Mold Disease Resistance in Winter Wheat

  • Chapter
Progress in Plant Cellular and Molecular Biology

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 9))

  • 22 Accesses

Abstract

Snow mold is one of the most serious diseases of winter wheat (Triticum aestivum) and grasses in Alaska and other high latitute regions (1–9). Snow mold disease can be caused by one or more of several low temperature parasitic fungi (7, 9). In Alaska, Sclerotinia borealis (=Myriosclerotinia borealis) and a sclerotial low temperature basidiomycete (sLTB) (identified as Coprinus sp. by Traquair in 1980 [10]) are the most prevalent pathogens (5,9). These fungi infect host plants in late fall or winter when the soil is not yet frozen. During long winters, under a thick snow layer, these fungi proliferate and spread in host tissues because of the dark, humid conditions. Death of the plant is due to depletion of carbohydrate reserves (11,12) and maceration of plant tissues (13,14) (McBeath and Adelman, unpublished data).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tupenevich, S.M. and Shirko, V.N. (1939) Elen. Plant Prot. Leningrad. 18, 85–99

    Google Scholar 

  2. Ekstrand, H. (1955) Stat. Vaxiskyddsanst. Madd. 67, 1–125

    Google Scholar 

  3. Groves, J.W. and Bowerman, C.A. (1955) Can. J. Bot. 33, 591–594

    Article  Google Scholar 

  4. Tomiyama, K. (1955) Rept. Hokkaido Agr. Exp. Sta. 47, 1–123

    Google Scholar 

  5. Lebeau, J.B. and Logsdon, C.E. (1958) Phytopathol. 48, 148–150

    Google Scholar 

  6. Bruehl, G.W., Sprague, R., Fischer, R., Nagamitsu, Nelson, W.L. and Vogel, O.A. (1966) Wash. Agr. Exp. Stn. Bull. 677, 1–21

    Google Scholar 

  7. Arsvoll, K. (1973) Norw. Plant Prot. Inst. Div. Plant Pathol. Rept. 56, 1–21

    Google Scholar 

  8. Jamalainen, E.A. (1974) Ann. Rev. Phytopathol. 12, 281–302

    Article  Google Scholar 

  9. McBeath, J.H. (1985) Plant Dis. 69, 722–23

    Article  Google Scholar 

  10. Traquair, J.A. (1980) Can. J. Plant Pathol. 2,105–115.

    Article  Google Scholar 

  11. Kiyomoto, R.K. and Bruehl, G.W. (1977) Phytopathol. 67, 206–211

    Article  CAS  Google Scholar 

  12. Amano, Y. and Osanai, S.I. (1983) Bull Hokkaido Prefect. Agric. Expt. Sta. 50, 83–97

    Google Scholar 

  13. McBeath, J.H. and Wenko, L. (1986) Phytopathol. 76, 1143

    Google Scholar 

  14. Mehizadegan, F. and McBeath, J.H. (1988) Phytopathol. 78, 1592

    Google Scholar 

  15. Chaleff, R.S. (1983) in Genetic Engineering of Plants (Kosuge, T., Meredith, P.C. and Hollaender, A., ed.) pp. 257–270, Pleunum, New York and London

    Google Scholar 

  16. Reisch, B.I. (1987) in Plant Cell Biotechnology (Pais, M.S.S., Mavituna, F. and Novais, J.M., ed.) pp. 87–95, Springer-Verlag, Berl in Heidelberg

    Google Scholar 

  17. Baenziger, P.S., Kudirka, D.T., Schaeffer, G.W. and Lazar, M.D. (1984) in Gene Manipulation in Plant Improvement (Gustafson, J.P., ed.) pp. 385–414, Pleunum, New York and London

    Chapter  Google Scholar 

  18. Larkin, P.J. and Scowcroft, W.R. (1983) in Genetic Engineering of Plants (Kosuge, T., Meredith, P.C. and Hollaender, A., ed.) pp. 289–314, Pleunum, New York and London

    Google Scholar 

  19. Anonymous, Research Group 301, (1976) Acta Genet. Sin. 3, 30–31

    Google Scholar 

  20. Murashige, T., and Skoog, F. (1962) Physiol. Plant. 15, 473–497

    Article  CAS  Google Scholar 

  21. Schaeffer, G.W., Baenziger, P.S. and Worley, J. (1979) Crop Sci. 19, 697–702

    Article  Google Scholar 

  22. McBeath, J.H. and Schaeffer, G.W. (1986) Phytopathol. 76, 1146

    Google Scholar 

  23. Marsh, P.B., Bollenbacher, K., Butler, M.L. and Raper, K.B. (1949) Textile Res. Jour. 19, 462–484

    Article  CAS  Google Scholar 

  24. Miller, G.L. (1959) Anal. Chem. 31, 426–428

    Article  CAS  Google Scholar 

  25. Almin, K.E. and Erickson, K.E. (1967) Biochem. et Biophys. Acta. 139, 238–247

    CAS  Google Scholar 

  26. Hipkins, M.F. and Baker, N.R. (1987) Photosynthesis Energy Tranduction: A Practical Approach. 197p. IRL Press Oxford, Washington D.C.

    Google Scholar 

  27. Lazar, M.D., P.S. Baenziger, and Schaeffer, G.W. (1984) Theor. Appl. Gennt. 68: 131–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

McBeath, J.H., Mehdizadegen, F., Lockwood, H. (1990). Anther Culture Selection to Enhance Snow Mold Disease Resistance in Winter Wheat. In: Nijkamp, H.J.J., Van Der Plas, L.H.W., Van Aartrijk, J. (eds) Progress in Plant Cellular and Molecular Biology. Current Plant Science and Biotechnology in Agriculture, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2103-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2103-0_39

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7445-2

  • Online ISBN: 978-94-009-2103-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics