Skip to main content

Electronic Structure of Stoichiometric and Non-Stoichiometric Titanium Carbides and Nitrides

  • Chapter
The Physics and Chemistry of Carbides, Nitrides and Borides

Part of the book series: NATO ASI Series ((NSSE,volume 185))

Abstract

In the present article a brief overview is given on the electronic structure and the nature of the chemical bonds in stoichiometric and substoichiometric titanium carbides and nitrides crystallizing in the sodium chloride structure. On the basis of APW band structure calculations it is shown that metallic, ionic, and covalent bonding occurs in the stoichiometric compounds. Three main types of covalent bonds can be distinguished: X 2p — Ti 3d σ bonds, X 2p — Ti 3d π bonds, and Ti 3d — Ti 3d σ bonds (X = C,N). The influence of vacancies at the non-metal sublattice sites on the electronic structure of the substoichiometric cubic phases TiXx was studied by two different approaches: (i) APW band structure calculations, assuming a hypothetical model structure with an ordered arrangement of vacancies, corresponding to the composition TiX0.75. (ii) KKR-CPA calculations, assuming a random distribution of vacancies and non-metal atoms over the non-metal sublattice sites. Both calculations lead to additional peaks (“vacancy peaks”) in the density of states, induced by the vacancies. The changes in the covalent bonds, compared with the stoichiometric compounds, are discussed on the basis of local partial densities of states and electron densities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calais, J.-L. (1977) ‘Band structure of transition metal compounds’, Adv. Phys. 26, 847–885.

    Article  CAS  Google Scholar 

  2. Neckel, A. (1983) ‘Recent investigations on the electronic structure of the fourth and fifth group transition metal monocarbides, mononitrides, and monoxides’, Int. J. Quantum Chem. 23, 1317–1353.

    Article  CAS  Google Scholar 

  3. Schwarz, K. and Neckel, A. (1986) ‘Chemical bonding in refractory transition metal compounds’, in E. A. Almond, C. A. Brooks, and R. Warren (eds.), Proc. 2nd. Int. Conf. Hard Materials, Inst. Phys. Conf. Ser. No 75, 45–60.

    Google Scholar 

  4. Schwarz, K. (1987) ‘Band structure and chemical bonding in transition metal carbides and nitrides’, in CRC Critical Reviews in Solid State and Materials Science 13, issue 3, 211–257.

    Article  CAS  Google Scholar 

  5. Slater, J. C. (1937) ‘Wave Functions in a Periodic Potential’, Phys. Rev. 51, 846–851.

    Article  CAS  Google Scholar 

  6. Koelling, D. D. and Arbman, G. O. (1977) ‘Use of energy derivative of the radial solution in an augmented plane wave method: application to copper’, J. Phys. F. 5, 2041–2053.

    Article  Google Scholar 

  7. Slater, J. C. (1968) ‘Quantum Theory of Matter’, McGraw-Hill, New York.

    Google Scholar 

  8. Neckel, A., Rastl, P., Eibler, R., Weinberger, P., and Schwarz, K. (1976) ‘Results of self-consistent band structure calculations for ScN, ScO, TiC, TiN, TiO, VC, VN and VO’, J. Phys. C. 9, 579–592.

    Article  CAS  Google Scholar 

  9. Neckel, A., Rastl, P., Eibler, R., Weinberger, P., and Schwarz, K. (1976) ‘Results of self-consistent band structure calculations for ScN, ScO, TiC, TiN, TiO, VC, VN, and VO’, report obtainable from the British Library under the Supplementary Publication Scheme, Ref. No. SUP 700 17.

    Google Scholar 

  10. Eibler, R., Dorrer, M., and Neckel, A. (1983) ‘Partial LCAO densities of states for ScN, TiN, ZrN, and ScP’, Theoret. Chim. Acta 63, 133–141.

    Article  CAS  Google Scholar 

  11. Neckel, A., Schwarz, K., Eibler, R., Weinberger, P.,and Rastl, P. (1975) ‘Bandstruktur des Festkörpers — Interpretation der chemischen Bindung in einigen Übergangsmetallverbindungen aufgrund von Bandstrukturrechnungen’, Ber. Bunsenges. Phys. Chem. 79, 1053–1063.

    CAS  Google Scholar 

  12. Schwarz, K. and Blaha, P. (1983) ‘Electron densities in solid compounds’ in J. P. Dahl and J. Avery (eds.), Local density approximations in Quantum Chemistry and Solid State Physics, Plenum Press, New York, pp. 605–616.

    Google Scholar 

  13. Blaha, P. and Schwarz, K. (1983) ‘Electron densities and chemical bonding in TiC, TiN, and TiO derived from energy band calculations’, Int. J. Quantum Chem. 23, 1535–1552.

    Article  CAS  Google Scholar 

  14. Redinger, J. (1983), private communication.

    Google Scholar 

  15. de Novion, C. H. and Landesman, J. (1985) ‘Order and disorder in transition metal carbides and nitrides: experimental and theoretical aspects’, Pure a. Appl. Chem. 10, 1391–1402.

    Article  Google Scholar 

  16. Storms, E. K. (1967) The Refractory Carbides, Academic Press, New York.

    Google Scholar 

  17. Goretzki, H. (1967) ‘Neutron diffraction studies on titanium-carbon and zirconium-carbon alloys’, phys. stat. sol. 20, K141–K143.

    Article  CAS  Google Scholar 

  18. Moisy-Maurice, V., de Novion, C. H., Christensen, A. N., and Just, W. (1981) ‘Elastic diffuse neutron scattering study of the defect structure of TiC0.76 and NbC0.73’, Solid State Comm. 39, 661–665.

    Article  Google Scholar 

  19. Moisy-Maurice, V., Lorenzelli, N., de Novion, C. H., and Convert, P. (1982) ‘High temperature neutron diffraction study of the order-disorder transition in TiC1-x’, Acta Met. 30, 1769–1779.

    Article  CAS  Google Scholar 

  20. Wriedt, H. A. and Murray, J. L. (1987) ‘The N-Ti system’, Bulletin of alloy phase diagrams 8, 378–412.

    Article  CAS  Google Scholar 

  21. Redinger, J., Eibler, R., Herzig, P., Neckel, A., Podloucky, R., and Wimmer, E. (1985) ‘Vacancy induced changes in the electronic structure of titanium carbide — I. Band structure and density of states’, J. Phys. Chem. Solids 46, 383–398.

    Article  CAS  Google Scholar 

  22. Schwarz, K. and Rösch, N. (1976) ‘Effects of carbon vacancies in NbC on superconductivity’, J. Phys. C. 9, L433–L437.

    Article  CAS  Google Scholar 

  23. Ries, G. and Winter, H. (1980) ‘Electronic structure of vacancies in refractory compounds and its influence on Tc’, J. Phys. F. 10, 1–7.

    Article  CAS  Google Scholar 

  24. Huisman, L. M., Carlson, A. E., Gelat, C. D., and Ehrenreich, H. (1980) ‘Mechanisms for energetic-vacancy stabilization: TiO and TiC’, Phys. Rev. B22, 991–1006.

    Google Scholar 

  25. Wimmer, E., Schwarz, K., Podloucky, R., Herzig, P., and Neckel, A. (1982) ‘The effect of vacancies on the electronic structure of NbO’, J. Phys. Chem. Solids 43, 439–447.

    Article  CAS  Google Scholar 

  26. Klima, J., Schadler, G., Weinberger, P., and Neckel, A. (1985) ‘On the electronic structure of TiNx’, J. Phys. F: Met. Phys. 15, 1307–1320.

    Article  CAS  Google Scholar 

  27. Marksteiner, P., Weinberger, P., Neckel, A., Zeller, R., and Dederichs, P. H. (1986) ‘Electronic structure of substoichiometric carbides and nitrides of titanium and vanadium’, Phys. Rev. B33, 812–822.

    Google Scholar 

  28. Herzig, P., Redinger, J., Eibler, R., and Neckel, A. (1987) ‘Vacancy induced changes in the electronic structure of titanium nitride’, J. Solid State Chem. 70, 281–294.

    Article  CAS  Google Scholar 

  29. Höchst, H., Bringans, R. D., Steiner, P., and Wolf, T. (1982) ‘Photoemission study of the electronic structure of stoichiometric and substoichiometric TiN and ZrN’, Phys. Rev. B25, 7183–7191.

    Google Scholar 

  30. Porte, L., Roux, L., and Hanus, J. (1983) ‘Vacancy effects in the x-ray photoelectron spectra of TiNx’, Phys. Rev. B28, 3214–3224.

    Google Scholar 

  31. Bringans, R. D. and Höchst, H. (1984) ‘Photoemission resonance effects in the nitrides of titanium and zirconium, Phys. Rev. B30, 5416–5420.

    Google Scholar 

  32. Beauprez, E.,Hague, C. F., Mariot, J.-M., Teyssandier, F., Redinger, J., Marksteiner, P., and Weinberger, P. (1986) ‘X-ray emission spectroscopy study of vacancy-induced electronic states in substoichiometric TiNx’, Phys. Rev. B34, 886–890.

    Google Scholar 

  33. Gubanov, V. A., Kurmaev, E. Z., and Ellis, D. E. (1981) ‘Valence states of titanium atoms in non-stoichiometric carbides: x-ray emission spectra and cluster calculations’, J. Phys. C: Solid State Phys. 14, 5567–5574.

    Article  CAS  Google Scholar 

  34. Kucherenko, Yu. N., Sheludchenko, L. M., Khrinovsky, V. Z., and Nemoshkalenko, V. V. (1984) ‘Study of the electron states in nonstoichiometric titanium nitrides by the Xα-scattered-wave method’, J. Phys. Chem. Solids 45, 319–322.

    Article  CAS  Google Scholar 

  35. Pflüger, J., Fink, J., Crecelius, G., Bohnen, K. P., and Winter, H. (1982) ‘Electronic structure of unoccupied states of TiC, TiN, and VN by electron-energy-loss-spectroscopy’, Solid State Comm. 44, 489–492.

    Article  Google Scholar 

  36. Marksteiner, P. (1987) ‘Elektronische Struktur nichtstöchiometrischer Verbindungen: Hartstoffe und Hochtemperaturlegierungen. Theorie der winkelintegrierten Photoemission im Röntgenbereich: Hartstoffe und heavy Fermiions’,thesis, Technical University, Vienna.

    Google Scholar 

  37. Redinger, J., Eibler, R., Herzig, P., Neckel, A., Podloucky, R., and Wimmer, E. (1986) ‘Vacancy induced changes in the electronic structure of titanium carbide — II. Electron densities and chemical bonding’, J. Phys. Chem. Solids 47, 387–393.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Neckel, A. (1990). Electronic Structure of Stoichiometric and Non-Stoichiometric Titanium Carbides and Nitrides. In: Freer, R. (eds) The Physics and Chemistry of Carbides, Nitrides and Borides. NATO ASI Series, vol 185. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2101-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2101-6_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7444-5

  • Online ISBN: 978-94-009-2101-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics