Skip to main content

Application of Transmission Electron Microscopy to the Study of Transition Metal Carbides

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 185))

Abstract

The importance and interest of Transmission Electron Microscopy for the microstructural characterization of transition metal carbides is illustrated through selected examples concerning ordering phenomena, irradiation studies and dislocation problems. Special attention is devoted to recent advances permitted by the application of High Resolution techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Science of Hard Materials”, ed. R.K. Visvanadham, D.J. Rowcliffe, J. Gurland, New York: Plenum Press, (1983).

    Google Scholar 

  2. STORMS E.K, “The Refractory Carbides”, New York: Academic Press (1967), 285 p.

    Google Scholar 

  3. KOSOLAPOVA T. Y., “Carbides: Properties, Production and Applications”, (1971), New-York: Plenum Press.

    Google Scholar 

  4. TOTH L.E., “Transition Metal Carbides and Nitrides”, (1971), New York: Academic Press.

    Google Scholar 

  5. WILLIAMS W. S., “transition-metal carbides”, (1971), Prog. Sol. State Chem., 6, pp. 57–115

    Article  CAS  Google Scholar 

  6. “Engineering Property Data on Selected Ceramics: volume 2, Carbides”, MCIC Report MCIC-HB-07, Battelle: Metals and Ceramics Information Center, (1979).

    Google Scholar 

  7. WILLIAMS W.S., “influence of temperature, strain rate, surface condition and composition on the plasticity of transition-metal carbide crystals”, (1964), J. Appl. Phys., vol. 35, n°4, pp. 1329–1338

    Article  CAS  Google Scholar 

  8. WILLIAMS W.S., “brittle-ductile behavior of the transition metal carbides”, pp. 181–190 in “Propriétés Thermodynamiques, Physiques et Structurales des Dérivés Semi-métalliques”, Colloque International CNRS n°157, (1965), Paris: Editions du CNRS, (1967).

    Google Scholar 

  9. DY L.C., WILLIAMS W.S., “resistivity, superconductivity and order-disorder transformations in transition metal carbides and hydrogen-doped carbides”, (1982), J. Appl. Phys., 53, 12, pp. 8915–8927.

    Article  CAS  Google Scholar 

  10. WILLIAMS W.S., “dispersion-hardening of titanium carbide by boron-doping”, (1966), Trans. Met. Soc. AIME, 236, pp. 211–216.

    CAS  Google Scholar 

  11. VENABLES J.D., “the nature of precipitates in boron-doped TiC”, (1967), Phil. Mag., 16, pp. 873–890.

    Article  CAS  Google Scholar 

  12. EPICIER T., “crystal chemistry of transition metal hemicarbides”, (1989), these Proceedings.

    Google Scholar 

  13. LEWIS M.H., BILLINGHAM J., BELL P.S., “non-stoichiometry in ceramic compounds”, pp. 1084–1115 in “Electron Microscopy and Structure of Materials”, ed. G. Thomas, R.M. Fulrath, R.M. Fischer, Berkeley: University of California Press, (1972).

    Google Scholar 

  14. MOISY-MAURICE V, “structure atomique des carbures non-stoéchiométriques de métaux de transition”, (1981), thèse d’Etat, Université de Strasbourg, rapport CEA-R5127.

    Google Scholar 

  15. DAS G., CHATTERJEE D.K., LIPSITT H.A., “electron irradiation damage in TiC”, (1981), J. of Mat. Sei., vol. 16, pp. 3283–3291.

    Article  CAS  Google Scholar 

  16. ATHANASSIADIS T., LORENZELLI N., DE NOVION C.H., “diffraction studies of the order-disorder transformation in V8C7”, (1987), Ann. Chem. Fr., 12, pp. 129–142.

    CAS  Google Scholar 

  17. EPICIER T., “contribution à l’étude des phénomènes d’ordre et des mécanismes de plasticité dans les carbures métalliques”, (1987), thèse d’Etat, Lyon, n° d’ordre 88/SAL/0038.

    Google Scholar 

  18. VENABLES J.D., KAHN D., LYE R.G., “structure of the ordered compound V6C5”, (1968), Phil. Mag., 18, pp 177–192.

    Article  CAS  Google Scholar 

  19. HANNINK R.H.J., MURRAY M.J., PACKER M.E., “observations on the domain structures of V6C5”, (1971), Phil. Mag., 191, pp 1179–1195.

    Article  Google Scholar 

  20. BILLINGHAM J., BELL P.S., LEWIS M.H., “a superlattice with monoclinic symmetry based on the compound V6C5”, (1972), Phil. Mag., vol. 25, n° 3, pp. 661–671.

    Article  CAS  Google Scholar 

  21. THORNTON P.H., GOVILA R.K., “presence of coherent precipitate in VC0.76 monocrystals”, (1973), J. less Corn. Metals, 30, pp. 343–349.

    Article  Google Scholar 

  22. HIRAGA K., “vacancy-ordering in vanadium carbides based on V6C5”, (1973), Phil. Mag., vol. 27, n° 6, pp 1301–1312.

    Article  CAS  Google Scholar 

  23. LEWIS M.H., BILLINGHAM J., “long-period order in vanadium carbide”, (1974), Phil. Mag., vol. 29, pp 241–252.

    Article  CAS  Google Scholar 

  24. EPICIER T. et KUMASHIRO Y., “a first HREM observation of the ordered carbon sublattice in a transition metal carbide (VC1-x)”, (1987), PHil. Mag. Letters, vol. 55, n° 4 pp. 171–179.

    Article  CAS  Google Scholar 

  25. VENABLES J.D., MEYERHOFF M.H., “ordering effects in NbC and TaC”, (1972), NBS Special Publ. 364, Solid State Chemistry, pp. 583–590.

    Google Scholar 

  26. MORGAN G., LEWIS M.H., “hardness anisotropy in niobium carbide”, (1974), J. Mater. Sci., 9, pp. 349–358.

    Article  CAS  Google Scholar 

  27. EPICIER T., KUMASHIRO Y., “conventional and high resolution electron microscopy of NbC≈0.88 single crystals”, (1989), J. Less Com. Metals, 146, pp. 17–32.

    Article  CAS  Google Scholar 

  28. YVON K., PARTHE E., “on the crystal chemistry of the close packed transition metal carbides. Part I”, (1970), Acta Cryst., B26, pp. 149–153.

    Google Scholar 

  29. VILLAGRANA R.E., THOMAS G., “interstitial ordering of carbon in tantalum”, (1965), Phys. Stat. Sol., 9, p. 499.

    Article  CAS  Google Scholar 

  30. DAHMEN U., THOMAS G., “significance of oxygen on interstitial ordering in tantalum (the Ta64C artefact)”, (1979), Scripta Met., 13, pp. 527–530.

    Article  CAS  Google Scholar 

  31. DE NOVION C.H., LANDESMANN J.P., “order and disorder in transition metal carbides and nitrides: experimental and theoretical aspects”, (1985), Pure & AppL Chem., Vol. 57, n° 10, pp. 1391–1402

    Article  Google Scholar 

  32. DE NOVION C.H., LANDESMANN J.P., “order-disorder and effective pair interactions in nonstoichiometric rocksalt-structure transition-metal carbides and nitrides”, pp. 499–528 in “Nonstoichiometric Compounds”, Adv. in Ceram. vol. 23, Westerville: Am. Ceram. Soc, (1987).

    Google Scholar 

  33. BILLINGHAM J., BELL P.S. et LEWIS M.H., “vacancy short-range order in substoichiometric transition metal carbides and nitrides with the Na-Cl structure. I: electron diffraction studies of short-range ordered compounds”, (1972), Acta Cryst., A28, pp. 602–606.

    Google Scholar 

  34. SAUVAGE M., PARTHE E., “vacancy short-range order in substoichiometric transition metal carbides and nitrides with the Na-Cl structure. II: numerical calculations of vacancy arrangement”, (1972), Acta Cryst., A28, pp. 607–616.

    Google Scholar 

  35. HIRAGA K., HIRABAYASHI M., “long-range and short-range order in interstitial compounds M2X with special reference to V2C and Nb2C”, (1977), J. de Phys., colloque C7, t 38, pp. 224–226

    Google Scholar 

  36. HIRAGA K., HIRABAYASHI M., “the formation of varieties of carbon ordering in pseudobinary compounds of V2C, Nb2C and Ta2C”, (1980), J. Appl. Cryst., 13, pp. 17–23.

    Article  CAS  Google Scholar 

  37. OHSHIMA K., HARADA J., MORINAGA M., GEOGOPOULOS P., COHEN J.B., “distortion-induced scattering due to vacancies in NbC0.72”, (1988), Acta Cryst., A44, pp. 167–176.

    CAS  Google Scholar 

  38. GEVERS R., “défauts plans”, pp. 155–186 in “Méthodes et Techniques Nouvelles d’Observation en Métallurgie Physique”, éd. B. Jouffrey, Paris: Soc. Fr. Microsc. Electr., (1972).

    Google Scholar 

  39. PARTHE E., SADAGOPAN V., “the structure of dimolybdenum carbide by neutron diffraction technique”, (1963), Acta Cryst., 16, pp. 202–205.

    Article  CAS  Google Scholar 

  40. HIRAGA K., SHINDO D., HIRABAYASHI M., “high voltage, high resolution electron microscopy of Au-Cd alloys: part I, II, III”, (1981), J. Appl. Cryst., 14, pp 169–190.

    Article  Google Scholar 

  41. EPICIER T., BLANCHIN M.G., FERRET P., FUCHS G., “HREM imaging of the carbon vacancy superlattice in the ordered carbide VC1-x”, (1989), Phil. Mag. A, vol. 59, n°4, pp. 885–906.

    Article  CAS  Google Scholar 

  42. O’KEEFE M.A., BUSECK P.R., “computation of high resolution TEM images of minerals”, (1979), Trans. Am. Crystallogr. Assoc., 15, pp. 27–46.

    Google Scholar 

  43. KILAAS R., “interactive simulation of high resolution electron micrographs”, pp. 66–69 in Proc. 45th Ann. Meeting EMSA, San Francisco: G.W. Bailey, (1987).

    Google Scholar 

  44. COWLEY J.M., MOODIE A.F., “the scattering of electrons by atoms and crystals. I: a new theoretical approach”, (1957), Acta Cryst., vol. 10, pp. 609–619.

    Article  CAS  Google Scholar 

  45. GUERIN Y., DE NOVION C.H., “structure cristalline de V8C7”, Rev. Int. Hautes Tempér. et Refract., (1971), t.8, pp. 311–314.

    CAS  Google Scholar 

  46. EPICIER T., KUMASHIRO Y., “an experimental study of crystallography and ordering phenomena in some transition metal carbides, part II: applicability of HREM to the study of order defects in vanadium carbide single crystals”, pp.677–690 in “Nonstoichiometric Compounds”, Adv. in Ceram. vol. 23, Westerville: Am. Ceram. Soc, (1987).

    Google Scholar 

  47. EPICIER T., ESNOUF C., “high resolution electron microscopy in transition metal carbides. Part II: study of the hexagonal hemicarbide W2C”, pp. 323–324 in Inst. Phys. Conf. Ser. n°93, vol. 2, (1988).

    Google Scholar 

  48. GUSEV A.I., REMPEL A.A., “order-disorder phase transition channel in niobium carbide”, (1986), Phys. Stat. Sol. (a), 93, pp. 71–80.

    Article  CAS  Google Scholar 

  49. LANDESMAN J.P., CHRISTENSEN A.N., DE NOVION C.H., LORENZELLI N, CONVERT P., “order-disorder transition and structure of the ordered vacancy compound Nb6C5: powder neutron diffraction studies”, (1985), J. Phys. C, 18, pp 809–823.

    Article  CAS  Google Scholar 

  50. CHRISTENSEN A.N., “vacancy order in Nb6C5”, (1985), Acta Chem. Scand., A39, pp. 803–804.

    Article  CAS  Google Scholar 

  51. HAUCK J., LARSON B.C., GRUZALSKI G.R., DARKEN L.S., BARHORST J.F., “ordering of carbon vacancies in VCx”, (1983), ORNL Report 5975, Solid State Division, p. 102.

    Google Scholar 

  52. MORILLO J., DE NOVION C.H., DURAL J., “electron radiation defects in TaC1-x and TiC0.97”, pp. 103–119 in “Science of Hard Materials”, ed. R.K. Visvanadham, D.J. Rowcliffe, J. Gurland, New York: Plenum Press, (1983).

    Google Scholar 

  53. VENABLES J.D., LYE R.G., “radiation damage of ordered V6C5 by electron microscope beam bombardment”, (1969), Phil. Mag., vol. 19, pp. 565–582.

    Article  CAS  Google Scholar 

  54. ALLISON C.Y., STOLLER R.E., KENIK E.A., “electron microscopy of electron damage in tantalum carbide”, (1988), J. Appl. Phys., 63, 5, pp. 1740–1743.

    Article  CAS  Google Scholar 

  55. GOSSET D., ALLISON C., MORILLO J., “défauts d’irradiation électronique dans le carbure de tantale”, (1984), Ann. Chim. Fr., vol.9, pp. 99–102.

    CAS  Google Scholar 

  56. GOSSET D., “Défauts d’Irradiation aux Electrons dans les Carbures de Tantale”, Thèse D.I., Université d’Orsay, (1985).

    Google Scholar 

  57. MURATA Y., YUKAWA N., MORI H., FUJITA H., “Electron irradiation induced disordering of short-range ordered (Ti,Mo)Cx carbide”, (1988), J. Less-Corn. Met., 141, pp. 309–319.

    Article  CAS  Google Scholar 

  58. CHATTERJEE D.K., LIPSITT H.A., “electron irradiation damage in titanium carbide”, (1980), J. of the less Com. Met., vol. 70, pp. 111–113.

    Article  CAS  Google Scholar 

  59. EPICIER T., ESNOUF C., “observations de l’hémicarbure de tungstène W2C par microscopic électronique en transmission”, (1984), J. Microsc. Spectrosc. Electron., vol. 9, pp. 17–28.

    CAS  Google Scholar 

  60. EPICIER T., ESNOUF C., DUBOIS J., FANTOZZI G., “dislocation structures in pocycristalline tungsten hemicarbide W2C deformed at high temperatures”, pp. 73–86 in “Deformation of Ceramics II”, Mat. Sci. Res., vol. 18, ed. R. E. Tressler, R.C. Bradt, New York: Plenum Press, (1984).

    Google Scholar 

  61. HOLLOX G.E., “microstructure and mechanical behaviour of carbides”, (1968/69), Mat. Sci. Eng., vol. 3, pp. 121–137.

    Article  CAS  Google Scholar 

  62. EPICIER T., DUBOIS J., ESNOUF C., FANTOZZI G., “mécanismes de déformation des carbures métalliques; exemple de l’hémicarbure de tungstène”, (1982), Rev. Int. Hautes Temp. Refract. Fr., 19, pp. 345–357.

    CAS  Google Scholar 

  63. ROWCLIFFE D. J., “plastic deformation of transition metal carbides”, pp. 49–71 in “Deformation of Ceramic Materials II”, Mat. Res. Sci. vol. 18, ed. R. E. Tressler, R. C. Bradt, New York: Plenum Press, (1984).

    Google Scholar 

  64. DAVIS R.F., “ nonstoichiometry and its effect on mass transport, order-disorder phenomena, and deformation behavior in transition-metal carbides”, pp. 529–557 in “Nonstoichiometric Compounds”, Adv. in Ceram. vol. 23, Westerville: Am. Ceram. Soc, (1987).

    Google Scholar 

  65. LEE D.W., HAGGERTY J.S., “plasticity and creep in single crystals of zirconium carbide”, (1969), J. Am. Ceram. Soc., vol. 52, n° 12, pp 641–647.

    Article  CAS  Google Scholar 

  66. DAS G., MAZDIYANSNI K.S., LIPSITT H.A., “mechanical properties of polycristalline TiC”, (1982), J. Am. Ceram. Soc., vol. 65, n°2, pp. 104–110.

    Article  CAS  Google Scholar 

  67. CHATTERJEE D.K., MENDIRATTA M.G., LIPSITT H.A., “deformation behaviour of single crystals of titanium carbide”, (1979), J. Mat. Sci., pp. 2151–2156.

    Google Scholar 

  68. GOVILA R.K., (1970), “dislocation etch-pits in vanadium carbide monocrystals”, Phil. Mag., 22, pp. 431–436.

    Article  CAS  Google Scholar 

  69. DEMENT’YEV L.N., ZUBAREV P.V., KRUGLOV V.N., TURCHIN V.N., KHARKHADIN Ye.D., “high temperature creep of niobium carbide single crystal”, (1978), Fiz. Met. Metalloved., vol. 46, N°3, pp. 620–624.

    Google Scholar 

  70. ROWCLIFFE D.J., HOLLOX G.E., “plastic flow and fracture of tantalum carbide and hafnium carbide at low temperature”, (1971), J. Mat. Sci., 6, pp. 1261–1269

    Article  CAS  Google Scholar 

  71. ROWCLIFFE D.J., HOLLOX G.E., “hardness anisotropy, deformation mechanisms and brittle-to-ductile transition in carbides”, (1971), J. Mat. Sci., 6, pp. 1270–1276.

    Article  CAS  Google Scholar 

  72. HANNINK R.H.J., KOHLSTEDT D.L., MURRAY M.J., ROWCLIFFE D.J., HOLLOX G.E., “slip system detemination in cubic carbides by hardness anisotropy”, (1972), Proc. Roy. Soc. Lond., A, 326, pp. 409–420.

    Article  CAS  Google Scholar 

  73. VAHLDIEK F.W., MERSOL S.A., “slip and microhardness of IVa to VIa refractory materials”, (1977), J. less Com. Metals, 55, pp. 265–278.

    Article  CAS  Google Scholar 

  74. BREVAL E., “microplasticity at room temperature of single-crystal titanium carbide with different stoichiometry”, (1981), J. Mat. Sci., 16, pp. 2781–2788.

    Article  CAS  Google Scholar 

  75. ROWCLIFFE D.J., WARREN W.J., “structure and properties of tantalum carbide crystals”, (1970), J. Mat. Sci., 5, pp. 345–350.

    Article  CAS  Google Scholar 

  76. VAHLDIEK F.W., MERSOL S.A., Lynch C.T., “microhardness anisotropy, slip and twinning in Mo2C single crystals”, (1966), Trans. Met. Soc. AIME, vol. 236, pp. 1490–1496.

    CAS  Google Scholar 

  77. DUBOIS J., ORANGE G., MAI C., FANTOZZI G., “comportement plastique à température ambiante de l’hémicarbure de tungstène”, (1978), C. R. Acad. Sc. Paris, série B, t. 287, pp. 53–56.

    CAS  Google Scholar 

  78. KUMASHIRO Y., ITOH A., KINOSHITA T., SOBAJIMA M., “the microVickers hardness of TiC single crystals up to 1500°C”, (1977), J. Mat. Sci., 12, pp. 595–601.

    Article  CAS  Google Scholar 

  79. KUMASHIRO Y., NAGAI Y., KATO H., SAKUMA E., WATANABE K., MISAWA S., “the preparation and characteristics of ZrC and TaC single crystals using an r.f. floating-zone process”, (1981), J. Mat. Sci., 16, pp. 2930–2933.

    Article  CAS  Google Scholar 

  80. KUMASHIRO Y., SAKUMA E., “the Vickers microhardness of non-stoichiometric niobium carbide and vandium carbide single crystals up to 1500°C”, (1980), J. Mat. Sci., 15, pp. 1321–1323.

    Article  CAS  Google Scholar 

  81. DUBOIS J., EPICIER T., ESNOUF C., FANTOZZI G., “mechanical behavior and electron microscopy analysis of W2C”, pp. 201–218 in “Science of Hard Materials”, ed. R.K. Visvanadham, D.J. Rowcliffe, J. Gurland, New York: Plenum Press, (1983).

    Google Scholar 

  82. TETELMAN A.S., “dislocation dipole formation in deformed crystals”, (1962), Acta Met., vol. 10, pp. 813–820.

    Article  CAS  Google Scholar 

  83. HOLLOX G.E., SMALLMAN R.E., “plastic behavior of titanium carbide”, (1966), J. Appl. Phys., vol. 37, n°2, pp. 818–823.

    Article  CAS  Google Scholar 

  84. CHEVACHAROENKUL S., DAVIS R.F., “dislocation mechanisms, diffusional processes and creep behavior in NbCx”, (1989), Acta Metall., vol. 37, n°2, pp. 417–427.

    Article  CAS  Google Scholar 

  85. MARTIN J.L., LACOUR-GAYET P., COSTA P., “plastic deformation of tantalum carbide up to 2200°C”, pp. 1131–1140 in “Electron Microscopy and Structure of Materials”, ed. G. Thomas, R.M. Fulrath, R.M. Fisher, Berkeley: University of California Press, (1972).

    Google Scholar 

  86. KURISHITA H., NAKAJIMA K., YOSHINAGA H., “the high temperature deformation in titanium carbide single crystals”, (1982), Mat. Sci. Eng., 54, pp. 177–190.

    Article  CAS  Google Scholar 

  87. CHERMANT J.L., LECLERC G., MORDIKE B.L., “deformation of titatnium carbide at high temperatures”, (1980), Z. Metallkde, 71, 7, pp. 465–469.

    CAS  Google Scholar 

  88. DARIOLA R., ARCHBOLD T.F., “plastic deformation of polycristalline zirconium carbide”, (1976), J. Mat. Sci., vol. 11, pp. 283–290.

    Article  Google Scholar 

  89. EPICIER T., ESNOUF C., DUBOIS J., FANTOZZI G., “observations of dislocations in tungsten hemicarbide deformed at high temperatures”, (1981), Scripta. Met., vol. 15, pp. 1279–1283.

    Article  CAS  Google Scholar 

  90. KELLY A., ROWCLIFFE D.J., “slip in titanium carbide”, (1966), Phys. Stat. Sol., vol. 14, pp. K29–33.

    Article  CAS  Google Scholar 

  91. ALLISON C., HOFFMAN M., WILLIAMS W.S., “electron energy loss spectroscopy of carbon in dissociated dislocations in tantalum carbide”, (1982), J. Appl. Phys., vol. 53, n°10, pp. 6757–6761.

    Article  CAS  Google Scholar 

  92. ALLISON C., WILLIAMS W.S., HOFFMAN M., “ quantitative electron energy loss spectroscopy of vanadium carbide”, (1984), Ultramicroscopy, 13, pp. 253–264.

    Article  CAS  Google Scholar 

  93. ALLISON C., WILLIAMS W.S., “measurements of carbon/metal ratio in a single grain of non-stoichiometric titanium carbide”,(1986), J. Am. Cer. Soc., vol. 69, n°1, pp. C2–C3.

    Article  CAS  Google Scholar 

  94. WILLIAMS W.S., (1989), private communication.

    Google Scholar 

  95. WILLIAMS W.S., (1989), these Proceedings.

    Google Scholar 

  96. BILLINGHAM J., LEWIS M.H., “dislocation mechanisms for the nucleation of transformations in vanadium carbide”, (1971), Phil. Mag., vol. 24, n°188, pp. 231–240.

    Article  CAS  Google Scholar 

  97. MARTIN J.L., JOUFFREY B., “dislocations partielles dans un carbure de tantale”, (1968), Le J. de Phys., t. 29, n°10, pp. 911–916.

    CAS  Google Scholar 

  98. ROWCLIFFE D.J., THOMAS G., “structure of non-stoichiometric TaC”, (1975), Mat. Sci. Eng., 18, pp. 231–238.

    Article  CAS  Google Scholar 

  99. HOFFMAN M., WILLIAMS W.S., “a simple model for the deformation behavior of tantalum carbide”, (1986), J. Am. Ceram. Soc., vol. 69, n°8, pp. 612–614.

    Article  CAS  Google Scholar 

  100. COCKAYNE D.J.H., “the weak beam technique as applied to dissociation measurements”, (1974), J. de Physique, C7, t. 35, pp. 141–148.

    Google Scholar 

  101. MARTIN J.L., (1973), “evidence of dislocation dissociation in nearly stoichiometric tantalum carbide using the weak beam technique”, J. of Microsc., vol. 98, pt 2, pp. 209–213

    Article  Google Scholar 

  102. DAS G., (1982), “measurement of the stacking fault energy in TiC”, J. less Corn. Met., vol. 83, pp. L7–L10.

    Article  CAS  Google Scholar 

  103. EPICIER T., DUBOIS J., ESNOUF C., FANTOZZI G., “dissociation and non-dissociation of dislocations in W2C deformed at high temperatures”, pp. 525–528 in “Dislocations in Solids”, ed. H. Suzuki, T. Ninomiya, K. Sumino, S. Takeuchi, Tokyo: University of Tokyo Press, (1985).

    Google Scholar 

  104. HANNINK R.H.J., MURRAY M.J., “the effect of domain size on the hardness of ordered VC0.84”, (1972), Acta Metall., vol. 20, pp. 123–131.

    Article  CAS  Google Scholar 

  105. BARNIER P., “frittage et caracterisation de céramiques dans le système zirconiumcarbone-oxygène”, E.N.S. Mines de Saint-Etienne, (1986), Thèse (n° 54 C.I.).

    Google Scholar 

  106. DAVIS R.F., (1986), private communication.

    Google Scholar 

  107. SPENCE J.C.H., “Experimental High Resolution Electron Microscopy”, Oxford: Clarendon Press, (1981) (see p. 155).

    Google Scholar 

  108. EPICIER T., (1988), unpublished results.

    Google Scholar 

  109. TREHEUX D., DUBOIS J., FANTOZZI G., “bulk and grain-boundary diffusion of 14C in tungsten hemicarbide”, (1981), Ceramics Int., vol. 7, n° 4, pp. 142–148.

    Article  CAS  Google Scholar 

  110. MATZKE HJ., “point defects and transport properties in carbides”, (1984), Solid. State Ionics, 12, pp. 25–45.

    Article  CAS  Google Scholar 

  111. DUBOIS J., FANTOZZI G., EPICIER T., ESNOUF C., “deformation mechanisms of polycristalline tungsten hemicarbide W2C”, (1986), Inst. Phys. Conf. Ser., n°75, New York: Adam Hilger ltd., pp. 265–278.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Epicier, T. (1990). Application of Transmission Electron Microscopy to the Study of Transition Metal Carbides. In: Freer, R. (eds) The Physics and Chemistry of Carbides, Nitrides and Borides. NATO ASI Series, vol 185. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2101-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2101-6_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7444-5

  • Online ISBN: 978-94-009-2101-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics