Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 185))

Abstract

Diamond can be grown metastably at subatmospheric pressures and moderate temperatures from hydrocarbon gases in the presence of atomic hydrogen. Atomic hydrogen can be generated by various methods, each of which generally leads to new chemical vapor deposition (CVD) diamond growth processes. Atomic hydrogen serves several critical roles in CVD diamond growth, namely: 1) stabilization of the diamond surface; 2) reduction of the size of the critical nucleus; 3) “dissolution” of carbon in the gas; 4) production of carbon solubility minimum; 5) generation of condensable carbon radicals in the gas; 6) abstraction of hydrogen from hydrocarbons attached to surface; 7) production of vacant surface sites; and 8) etching of graphite. Atomic hydrogen can carry out these functions because of favorable relationships between energies for carbon-carbon, carbon-hydrogen and hydrogen-hydrogen bonds. A direct substitute for atomic hydrogen has not been found although potential substitutes have been used to increase diamond growth rates. Potential substitutes have also been used indirectly to develop new methods of CVD diamond growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bent, Henry A., (1965) “Second Law of Thermodynamics,” Oxford University Press, New York.

    Google Scholar 

  2. Davies, Gordon, (1984) “Diamond,” Adam HilgerLtd, Bristol.

    Google Scholar 

  3. Bundy, F.P., H.T. Hall, H.M. Strong, and R.J. Wentorf Jr, (1955) Nature 176, 51–54.

    Article  CAS  Google Scholar 

  4. Devries, R.C., (1987) Ann Rev Mater Sei 17, 161–187.

    Article  CAS  Google Scholar 

  5. Eversole, W.G. (April 17, 1962) U.S. Patent No. 3030188,.

    Google Scholar 

  6. Angus, J.C., H.A. Will, and W.S. Stanko (1968) J.Appl.Phys 39, 2915.

    Article  CAS  Google Scholar 

  7. Poferi, D.J., N.C. Gardner and J.C. Angus (1973) J.Appl.Phys 44, 1428.

    Article  Google Scholar 

  8. Spear, K.E. (1989) J. Am. Ceramic Soc 72, 171.

    Article  CAS  Google Scholar 

  9. Spitsyn, B.V., L.L. Bouilov and B.V. Deryagin (1981) J.Cryst.Growth 52, 219.

    Article  CAS  Google Scholar 

  10. Jones, W.E., S.D. Macknight and L. Teng (1979) Chemical Revs 73, 407.

    Article  Google Scholar 

  11. Langmuir, I. (1912) J.Amer.Chem.Soc 34, 860.

    Article  CAS  Google Scholar 

  12. Langmuir, I (1912) J.Amer.Chem.Soc 34, 1310.

    Article  Google Scholar 

  13. Langmuir, I and G.M.J. Mackay (1914) J.Amer.Chem.Soc 36, 1708.

    Article  CAS  Google Scholar 

  14. Langmuir, I (1915) J.Amer.Chem.Soc 37, 417.

    Article  CAS  Google Scholar 

  15. Kamo, M., Y. Sato, S. Matsumoto and N. Setaka (1983) J. Crystal Growth 62, 642.

    Article  CAS  Google Scholar 

  16. Matsumoto, S. Y. Sato, M. Kamo and N. Setaka (1982) Japn.J.Appl.Phys 21, L183.

    Article  Google Scholar 

  17. Grabke, H.J. (1965) Berichte der Bunsengesellschaft 69, 409.

    CAS  Google Scholar 

  18. Grabke, H.J (1970) Metallurgical Transactions 1, 2972.

    CAS  Google Scholar 

  19. Anthony, T.R. (1987) MRS Fall Meeting, Nov30-Dec3, Boston.

    Google Scholar 

  20. Vakil, H.B. (March 1989) Am Chem Soc Meeting, Dallas.

    Google Scholar 

  21. Hughes, J.E. (1959) J.Less Common Metals 1, 377.

    Article  CAS  Google Scholar 

  22. Gaines, G.B. C.T. Sims and R.I. Jaffe, (1959) J.Electrochem Soc 106, 881.

    Article  CAS  Google Scholar 

  23. Lux, Benno and R. Haubner (1989) Proceedings 12th Int Plansee Seminar C16, 461.

    Google Scholar 

  24. Wood, R.W. (1923) Proc Roy Soc, Ser A 102, 1.

    Google Scholar 

  25. Suzuki, J., H. Kawarada, K. Mar, J. Wei, Y. Yokota and A. Hiraki (1989) Jap Journ Appl Phys 28, L281.

    Article  Google Scholar 

  26. Watanabe, I. and K Sugata (1988) Jap Journ.Appl.Phys. 27, 1397.

    Article  CAS  Google Scholar 

  27. Matsumoto, O, H. Toshima and Y. Kanzaki (1985) Thin Solid Films 128, 341.

    Article  CAS  Google Scholar 

  28. Mitsuda, Y., Y. Kojima,T. Yoshida and K. Akashi. (1987) Journ Mat Sci 22, 1557.

    Article  CAS  Google Scholar 

  29. Kawarda, H., K.S. Mar and A. Hiraki (1987) Jap.Journ.App.Phys 26, L1032.

    Article  Google Scholar 

  30. Kamo, M., Y. Sato, S. Matsumoto and N. Setaka (1983) J.Crystal Growth 62, 642.

    Article  CAS  Google Scholar 

  31. Saito, Y., S. Matsuda and S. Nogita (1986) Journ.Mat.Sci.Letters 5, 565.

    Article  CAS  Google Scholar 

  32. Vandenbulke, L., P. Bou, R. Herbin, V. Cholet and C. Beny (1989) Journ de Phys Colloque C5, Suppl 5, Tome 50, 177.

    Google Scholar 

  33. Matsumoto, S. (1985) J.Mater.Sci.Letters 4, 600.

    Article  CAS  Google Scholar 

  34. Taylor, H.S. (1926) J.Amer.Chem.Soc. 48, 2840.

    Article  CAS  Google Scholar 

  35. Taylor, H.S. and G. Marshall (1925) J.Phys.Chem 29, 842.

    Article  Google Scholar 

  36. Melville, H.W. and J.C. Robb (1949) Proc.Roy.Soc., Ser.A, 196, 445.

    Article  CAS  Google Scholar 

  37. Cvetanovic, R.J. and L.C. Doyle (1969) J.Phys.Chem. 50, 4705.

    Article  CAS  Google Scholar 

  38. Yang, K.(1962) J.Amer.Chem.Soc. 84, 719.

    Article  CAS  Google Scholar 

  39. Black, R.A. (1960) J.Phys.Chem. 64, 124.

    Article  Google Scholar 

  40. Bishop, W.P. and L.M. Dorfman (1970) J.Chem.Phys 52, 3210.

    Article  CAS  Google Scholar 

  41. Chonan, T., M. Uenura, S. Futaki and S. Nishi (1989) Jap.Journ.Appl.Phys 28, L1058.

    Article  CAS  Google Scholar 

  42. Suziki, K., A. Sawabe, H. Yasuda and T. Inuzuka (1987) Appl.Phys.Letters50,728.

    Article  Google Scholar 

  43. Akatsuka, F., Y. Hirose and K. Komaki (1988) Jap.Journ.Appl.Phys 27, L1600.

    Article  CAS  Google Scholar 

  44. Kurihara, K., K. Sasaki, M. Kawarada and N. Koshima (1988) Appl Phys Letters 52,437.

    Article  CAS  Google Scholar 

  45. Matsumoto, S., T. Kobayshi, M. Hino, T. Ishigaki, and Y. Moriyoshi (1987) 8th International Symposium on Plasma Chemistry, ISPC 8, Paper No. S7–03, p2458, Tokyo.

    Google Scholar 

  46. Baldwin, R.R., D.E. Hopkins and R.W. Walker (1970) Trans Faraday Soc. 66, 189.

    Article  CAS  Google Scholar 

  47. Fenimore, C.P. and G.W. Jones (1961) J.Phys.Chem 65, 2200.

    Article  CAS  Google Scholar 

  48. Fenimore, C.P and G.W. Jones (1963) 9th Symp. Int. Combust.Proc. 597.

    Google Scholar 

  49. Hirose, Y. and N. Kondo (March 29, 1988 ) “Program and Book of Abstracts,” Japan Applied Physics 1988 Spring Meeting, p434.

    Google Scholar 

  50. Yazu, S., S. Sato and N. Fujimori (August 16–20, 1988) SPIE Proceedings, San Diego.

    Google Scholar 

  51. Hanssen, L.M., W.A. Carrington, D.B. Oakes, J.E. Butler and K.A. Snail (July 11–13, 1989) 1989 Diamond Technology Initiative Symposium, Paper 17.

    Google Scholar 

  52. Goodwin, D.G. (July 11–13, 1989) 1989 Diamond Technology Initiative Symposium, Paper T15.

    Google Scholar 

  53. Cappelli, M.A. (July 11–13, 1989) 1989 Diamond Technology Initiative Symposium, Paper W 1.

    Google Scholar 

  54. Glassman, I. “Combustion,” (1977) Academic Press, New York.

    Google Scholar 

  55. Pate, B.B. (1986) Surf. Sci. 165, 83.

    Article  CAS  Google Scholar 

  56. Angus, J.C. and C.C. Hayman (1988) Science 241, 913.

    Article  CAS  Google Scholar 

  57. Bachman, P.K. and R. Messier (1989) Chem & Eng News 67, 24.

    Article  Google Scholar 

  58. Litos, R., R. Haubner, and B. Lux (1989) Proc 12th Int Plansee-Seminar C2, 615.

    Google Scholar 

  59. Joffreau, P.O., R.Haubner and B. Lux (1988) J.Ref Hard Metals7, 186.

    CAS  Google Scholar 

  60. Lersmacher, B., H.Lydtin, W.F.Knippenberg and A.W. Moore (1967) Carbon 5, 205.

    Article  CAS  Google Scholar 

  61. Van Den Hoek, W.J. and W. Klessens (1975) Carbon 13,429.

    Article  Google Scholar 

  62. Chen, Ian (1988) J.Appl.Phys 64, 3742.

    Article  CAS  Google Scholar 

  63. Harris, S.J., A.M. Weiner and T.A. Perry (1988) Appl.Phys.Letters 53, 1605.

    Article  CAS  Google Scholar 

  64. Frenklach, M. and K.E. Spear (1988) J.Mater.Res. 3, 133.

    Article  CAS  Google Scholar 

  65. Hsu, W.L. (Nov,1987) 34th Nat Symp AVS, TF-WeAl,.

    Google Scholar 

  66. Deryagin, B.V. and D.V.Fedoseev (1977) “Growth of Diamond and Graphite from the Vapor Phase,” Izd Naulua., Moscow, USSR.

    Google Scholar 

  67. Frenklach, M. (1989) J.Appl.Phys 65, 5142.

    Article  CAS  Google Scholar 

  68. Rosner, D.E. and J.P.Strakey (1973) Jour.Phys.Chem 77, 690.

    Article  CAS  Google Scholar 

  69. Rosner, D.E. and H.D. Allendorf (1971)Jour.Phys.Chem 75, 308.

    Article  CAS  Google Scholar 

  70. Rudder, R.A., J.B. Posthill, G.C. Hudson, M.J. Mantini and R.J. Markunas, (July 11–13, 1989) 1989 Diamond Technology Initiative Symposium, Paper W16.

    Google Scholar 

  71. Kawato T. and K. Kondo (1987) J.Appl.Phys. 26, 1429.

    Article  CAS  Google Scholar 

  72. Chang, C.P., D.L. Flamm, D.E.Ibbotson and J. Mucha (1988) J.Appl.Phys 63, 1744.

    Article  CAS  Google Scholar 

  73. Saito, Y., K. Sato, H. Tanaka, K. Fujita and S. Matsuda (1986) J.Mater.Sci 23, 842.

    Article  Google Scholar 

  74. Hirose, Y. and Y. Terasawa (1986) Japan J. Appl. Phys 25, L519.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Anthony, T.R. (1990). Metastable Synthesis of Diamond. In: Freer, R. (eds) The Physics and Chemistry of Carbides, Nitrides and Borides. NATO ASI Series, vol 185. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2101-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2101-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7444-5

  • Online ISBN: 978-94-009-2101-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics