Skip to main content

General Circulation Modelling of the Atmosphere

  • Chapter
Climate-Ocean Interaction
  • 125 Accesses

Abstract

The principles involved in constructing and testing an atmospheric general circulation model (AGCM) are discussed. Surface fluxes simulated by versions of the Meteorological Office AGCM are presented and assessed against climatological data. Examples are given of the changes in surface fluxes in numerical experiments with CO2. Finally, the problems of coupling atmosphere and ocean models are discussed and future advances in atmospheric modelling are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with large-scale environment. Part I. J. Atmos. Sci., 31, 674–701.

    Article  Google Scholar 

  • Betts, A. K., and M. J. Miller, 1984: A new convective adjustment scheme. ECMWF Technical Report No. 43, European Centre for Medium Range Weather Forecasts, Shinfield Park, UK, 65 pp.

    Google Scholar 

  • Carson, D. J., and M. J. P. Cullen, 1976: Intercomparison of short-range numerical forecasts using finite difference and finite element models from the UK Meteorological Office. (Paper presented at the joint DMG/AMS International Conference on the Simulation of Large-Scale Atmospheric Processes, Hamburg, August 30—September 4, 1976 ). Met 0 20 Tech. Note II/81, Meteorological Office, Brackneell, UK, 23 pp.

    Google Scholar 

  • Dyson, J. F., 1985: The effect of resolution and diffusion on the simulated climate. DCTN33, Met 0 20, Meteorological Office, Bracknell, Berkshire, UK, RG12 2SZ, 36 pp.

    Google Scholar 

  • Esbensen, S. K., and Y. Kushnir, 1981: The heat budget of the global ocean: An atlas based on estimates from surface marine observations. Report No. 29, Climate Research Institute, Oregon State University, Corvallis, OR, 27 pp. plus 188 figures.

    Google Scholar 

  • Fraedrich, K., 1978: Catastrophes and resilience of a zero-dimensional climate system with ice-albedo and greenhouse feedback. Q. J. Roy. Meteorol. Soc., 105, 147–167.

    Article  Google Scholar 

  • Ghil, M., and S. Childress, 1987: In Topics in Geophysical Fluid Dynamics; Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics. Applied Mathematical Sciences 60, Springer Verlag, NY, 485 pp.

    Google Scholar 

  • Goldenburg, S. S., and J. J. O’Brien, 1981: Time and space variability of the tropical Pacific wind-stress. Mon. Wea. Rev., 104, 1190–1207.

    Article  Google Scholar 

  • Gordon, C., 1989: Comparison of the surface fluxes in the tropical Pacific Ocean derived from an atmospheric general circulation model and from climatology. Tropical Ocean-Atmosphere Newsletter, 51, 1–4.

    Google Scholar 

  • Hellerman, S., and M. Rosenstein, 1983: Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr., 13, 1093–1104.

    Article  Google Scholar 

  • Jaeger, L., 1976: Monatskarten des Niederschlags M. die ganze Erde. Bericht Deutscher Wetterdienst, 18, No. 139, 38 pp.

    Google Scholar 

  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large scale flow. J. Atmos. Sci., 31, 1232–1240.

    Article  Google Scholar 

  • Lal, M., and V. Ramanathan, 1984: The effects of moist convection and water vapor radiative processes on climate sensitivity. J. Atmos. Sci., 41, 2238–2279.

    Article  Google Scholar 

  • Lorenz, E., 1975: Climatic predictability. In WMO-GARP Publication Series No. 16, Geneva, pp. 132–136.

    Google Scholar 

  • Lyne, W. H., and P. R. Rowntree, 1976: Development of a convective parametrization using GATE data. Met 0 20 Technical Note I1/70, Meteorological Office, Bracknell, UK, 45 pp.

    Google Scholar 

  • Manabe, S., and J. L. Holloway, Jr., 1975: The seasonal variation of the hydrologic cycle as simulated by a global model of the atmosphere. J. Geophys. Res., 80, 1617–1649.

    Article  Google Scholar 

  • Manabe, S., and R. J. Stouffer, 1980: Sensitivity of a global climate model to an increase in the CO2 concentration in the atmosphere. J. Geophys. Res., 85, 5529–5554.

    Article  Google Scholar 

  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361–385.

    Article  Google Scholar 

  • Manabe, S., D. G. Hahn and J. R. Holloway, Jr., 1979: Climate simulations with GFDL spectral models of the atmosphere. Effect of Spectral Resolution. Report of JOC Study Conference on Climate Models, Performance, Intercomparison and Sensitivity Studies. GARP Publ. Ser., 22, 41–94.

    Google Scholar 

  • Mansfield, D. A., 1986: The skill of dynamical long-range forecasts, including the effect of sea-surface temperature anomalies. Q. J. Roy. Meteorol. Soc., 112, 1145–1176.

    Article  Google Scholar 

  • Mintz, Y., 1981: A brief review of the present status of global precipitation estimates. In proceedings of NASA workshop Precipitation Measurements from Space, D. Atlas and O. W. Thiele (eds.), D1 - D2.

    Google Scholar 

  • Mitchell, J. F. B., 1983: The seasonal response of a general circulation model to changes in CO2 and sea surface temperature. Q. J. Roy. Meteorol. Soc., 109, 113–152.

    Google Scholar 

  • Mitchell, J. E B., 1989: The “greenhouse” effect and climate change. Rev. Geophys., 27, 115–139.

    Article  Google Scholar 

  • Mitchell, J. F. B., C. A. Wilson and W M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Q. J. Roy. Meteorol. Soc., 113, 1–30.

    Article  Google Scholar 

  • Palmer, T. N., G. J. Schutts and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization. Q. J. Roy. Meteorol. Soc., 112, 1001–1039.

    Article  Google Scholar 

  • Paltridge, G. W., and C. M. R. Platt, 1976: Radiative processes in meteorology and climatology. Developments in Atmospheric Science, 5, Elsevier, NY, 318 pp.

    Google Scholar 

  • Ramanathan, V., R. J. Cicerone, H. B. Singh and J. T. Kiehl, 1985: Traces gas trends and their potential role in climate change. J. Geophys. Res., 90, 5547–5566.

    Article  Google Scholar 

  • Rodgers, C. D., 1977: Radiative Processes in the Atmosphere. In Parametrization of Physical Processes in the Free Atmosphere. Proceedings of ECMWF Seminars, pp. 5–66.

    Google Scholar 

  • Rowntree, P. R., 1989: Progress and future developments in modelling the climate system with general circulation models. In Contributions of Geophysics to Climate Change Studies, Proceedings of IUGG Symposium 15, A. Berger, R. E. Dickinson and J. Kidson (eds.). AGU Geophysical Monograph Series, no. 52, 163–175.

    Google Scholar 

  • Sausen, R., K. Barthel and K. Hasselmann, 1988: Coupled ocean-atmosphere models with flux corrections. Clim. Dyn., 2, 145–163.

    Article  Google Scholar 

  • Schlesinger, M. E., 1985: Feedback analysis of results from energy balance and radiative convective models. In Projecting the Climate Effects of Increasing Carbon Dioxide. M. C. MacCracken and E M. Luther (eds.), Rep. DOE/ER-0237, U.S. Dept. of Energy, Washington, DC.

    Google Scholar 

  • Schlesinger, M. E., 1988 (ed.): Physically-Based Modelling and Simulation of Climate and Climatic Change. Proceedings of the NATO Advanced Study Institue held in Erice, Sicily, 11–23 May 1986. NATO ASI Series C, Mathematical and Physical Sciences; No. 243, Kluwer Academic, 1084 pp.

    Google Scholar 

  • Schlesinger, M. E., and J. E B. Mitchell, 1985: Model projections of equilibrium response to increased CO2 concentrations. In Projecting the Climate Effects of Increasing Carbon Cioxide. M. C. MacCracken and E M. Luther (eds.), Rep. DOE/ER-0237, U.S. Dept. of Energy, Washington, DC, pp. 81–148.

    Google Scholar 

  • Schlesinger, M. E., and J. E B. Mitchell, 1987: Climate model simulations of the equilibrium climatic response to increased carbon dioxide. Rev. Geophys., 25, 760–798.

    Article  Google Scholar 

  • Slingo, A., and D. Pearson, 1987: A comparison of the impact of an envelope orography and of a parametrization of orographic gravity wave drag on model simulations. Q. J. Roy. Meteorol. Soc., 113, 847–870.

    Article  Google Scholar 

  • Slingo, A., and R. C. Wilderspin, 1986: Development of a revised longwave radiation scheme for an atmospheric general circulation model. Q. J. Roy. Meteorol. Soc., 112, 371–386.

    Article  Google Scholar 

  • Slingo, A., R. C. Wilderspin and R. N. B. Smith, 1989: The effect of improved physical parametrizations on simulations of cloudiness and the earth’s radiation budget in the tropics. J. Geophys. Res., 94, 2281–2301.

    Article  Google Scholar 

  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Q. J. Roy Meteorol. Soc. (to appear). (Also Met O 20 DCTN68, available from the Meteorological Office, Bracknell, RG12 2SZ, UK., 53 pp.)

    Google Scholar 

  • Wetherald, R. T., and S. Manabe, 1975: The effects of changing the solar constant on the climate of a general circulation model. J. Atmos. Sci., 32, 2044–2059.

    Article  Google Scholar 

  • Wilson, C. A., and J. F. B. Mitchell, 1987: A doubled CO2 climate sensitivity experiment with a GCM including a simple ocean. J. Geophys. Res., 92, 13315–13343.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 British Crown Copyright

About this chapter

Cite this chapter

Mitchell, J.F.B. (1990). General Circulation Modelling of the Atmosphere. In: Schlesinger, M.E. (eds) Climate-Ocean Interaction. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2093-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2093-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7440-7

  • Online ISBN: 978-94-009-2093-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics