Skip to main content

Climatic Change and Ocean Bottom Water Formation: Are We Missing Something?

  • Chapter
Climate-Ocean Interaction

Abstract

The global thermohaline circulation is driven by negative buoyancy sources associated with surface cooling and salinity enhancement, with subsequent upwelling over all the world’s oceans. Relatively shallow, thermally-driven convective overturning occurring at high latitudes which arises from heating of the atmosphere by the oceans is fairly well represented in current numerical ocean models, but deep convection from surface salinity sources including North Atlantic Deep Water (NADW) and, particularly, Antarctic Bottom Water (AABW) is not. A schematic model is developed for AABW which incorporates brine rejection during the seasonal sea ice cycle and sinking in boundary layers along the continental shelf and slope of Antarctica. This model predicts the formation of 30–40 Sv of bottom water from an annual sea ice freezing rate of order 1 Sv. These values and the predicted top-to-bottom potential density increment in the Southern Ocean are in reasonable accord with observations. When the amount of sea ice freezing is expressed as a function of hemispheric mean sea surface temperature (calibrated from the seasonal cycle), the model predicts the possible cutoff of AABW and most of the thermohaline circulation for a four degree Celsius global mean warming, an event which could be triggered in the next century by anthropogenic greenhouse gases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berger, W. H., 1981: Paleoceanography: The deep-sea record. In The Oceanic Litho-sphere; The Sea, Vol. 7, C. Emiliani (ed.), Wiley-Interscience, NY, pp. 1437–1519.

    Google Scholar 

  • Broecker, W. S., 1987: Unpleasant surprises in the greenhouse? Nature, 328, 123–126.

    Article  Google Scholar 

  • Bryan, K., and M. D. Cox, 1972: An approximate equation of state for numerical models of ocean circulation. J. Phys. Oceanogr., 2, 510–514.

    Article  Google Scholar 

  • Bryan, K., and M. J. Spelman, 1985: The ocean’s response to a CO2-induced warming. J. Geophys. Res., 90, 11, 679–11, 688.

    Google Scholar 

  • Foster, T. D., and J. H. Middleton, 1980: Bottom water formation in the western Weddell Sea. Deep-Sea Res., 27A, 367–381.

    Article  Google Scholar 

  • Gill, A. E., 1973: Circulation and bottom water production in the Weddell Sea. Deep-Sea Res., 20, 111–140.

    Google Scholar 

  • Gordon, A. L., 1982: Weddell Deep Water variability. J. Mar. Res., 40, suppl., 199–217.

    Google Scholar 

  • Grotch, S. L., 1988: Regional Intercomparisons of General Circulation Model Predictions and Historical Climate Data, Report DOE/NBB-0084, Atmospheric and Geophysical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, 291 pp.

    Google Scholar 

  • Häkkinen, S., 1987: A Coupled dynamic-thermodynamic model of an ice-ocean system. J. Geophys. Res., 92, 9469–9477.

    Article  Google Scholar 

  • Hansen, J., and S. Lebedeff, 1988: Global surface air temperatures: Update through 1987. Geophys. Res. Lett., 15, 323–326.

    Article  Google Scholar 

  • Hoffert, M. I., A. J. Callegari and C. T. Hsieh, 1980: The role of deep sea forcing in the secular response to climatic forcing. J. Geophys. Res., 85, 6667–6679.

    Article  Google Scholar 

  • Hoffert, M. I., B. P. Flannery, A. J. Callegari, C. T. Hsieh and W. Wiscombe, 1983: Evaporation-limited tropical ocean temperatures as a Constraint on climate sensitivity. J. Atmos. Sci., 40, 1659–1668.

    Article  Google Scholar 

  • Huang, R. X., and K. Bryan, 1987: A multilayer model of the thermohaline and wind-driven ocean circulation. J. Phys. Oceanogr., 17, 1909–1924.

    Article  Google Scholar 

  • Kellogg, T. B., 1987: Glacial-interglacial changes in global deepwater circulation. Pale-oceanography, 2, 259–271.

    Google Scholar 

  • Killworth, P. D., 1973: A two-dimensional model for the formation of Antarctic Bottom water. Deep-Sea Res., 20, 941–971.

    Google Scholar 

  • Lennon, G. W., D. G. Bowers, R. A. Nunes, R. D. Scott, M. Ali, Cai Wenju, M. Herzfeld, G. Johansson, S. Nield, P. Petrusevics, P. Stephenson, A. A. Suskin and S. E. A. Wijffels, 1987: Gravity currents and the release of salt from an estuary. Nature, 327, 695–697.

    Article  Google Scholar 

  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Professional Paper 13, National Oceanic and Atmospheric Administration, Rockville, MD, 173 pp.

    Google Scholar 

  • Manabe, S., and K. Bryan, 1985: CO2 induced changes in a Coupled ocean-atmosphere model and its paleoclimatic implications. J. Geophys. Res., 90, 1689–1707.

    Google Scholar 

  • Maykut, G. A., and N. Untersteiner, 1971: Some results from a time-dependent thermo-dynamic model of sea ice. J. Geophys. Res., 76, 1550–1575.

    Article  Google Scholar 

  • Melling, H., and E. L. Lewis, 1982: Shelf drainage flows in the Beaufort Sea and their effect on the Arctic Ocean pycnocline. Deep-Sea Res., 29, 967–985.

    Article  Google Scholar 

  • Neumann, G., and W. J. Pierson, Jr., 1966: Principles of Physical Oceanography. Prentice-Hall, Inc., Englewood Cliffs, NJ, 545 pp.

    Google Scholar 

  • Oort, A. H., 1983: Global Atmospheric Circulation Statistics 1958–1973. NOAA Professional Paper 14, National Oceanic and Atmospheric Administration, Rockville, MD, 180 pp. 1–47 Microfiches.

    Google Scholar 

  • Parkinson, C. L., and R. A. Bindschadler, 1984: Response of Antarctic sea ice to uniform atmospheric temperature increases. In Climate Processes and Climate Sensitivity, J.E. Hansen and T. Takahashi (eds.), Maurice Ewing Ser. 5, Geophys. Monograph. 29, American Geophysical Union, Washington, DC, pp. 254–264.

    Chapter  Google Scholar 

  • Parkinson, C. L., and W. M. Washington, 1979: A large-scale numerical model of sea ice. J. Geophys. Res., 84, 311–337.

    Article  Google Scholar 

  • Savin, S. M., 1977: The history of the earth’s surface temperature during the past 100 million years. Ann. Rev. Earth Planet. Sci., 5, 319–355.

    Article  Google Scholar 

  • Schlesinger, M. E., and X. Jiang, 1988: The transport of CO2-induced warming into the ocean: An analysis of simulations by the OSU Coupled atmosphere-ocean general circulation model. Clim. Dyn., 3, 1–17.

    Article  Google Scholar 

  • Schopf, T. J. M., 1980: Paleoceanography. Harvard University Press, Cambridge, MA, 341 pp.

    Google Scholar 

  • Semmer, A. J., Jr., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379–389.

    Article  Google Scholar 

  • Turner, J. S., 1981: Small scale mixing processes. In Evolution of Physical Oceanography. B. A. Warren and C. Wunsch (eds.), MIT Press, Cambridge, MA, pp. 236–262.

    Google Scholar 

  • Untersteiner N., 1984: The cryosphere. In The Global Climate, J. T. Houghton, (ed.), Cambridge University Press, NY, pp. 121–140.

    Google Scholar 

  • Warren, B. A., 1981: Deep circulation in the world ocean. In Evolution of Physical Oceanography, B. A. Warren and C. Wunsch (eds.), MIT Press, Cambridge, MA, pp. 6–41.

    Google Scholar 

  • Washington, W. M., and C. L. Parkinson, 1986: An Introduction to Three-Dimensional Climate Modeling. Oxford University Press, 422 pp.

    Google Scholar 

  • Watts, R. G., and M. Morantine, 1988: Rapid climatic change and the deep ocean. Climatic Change (in press).

    Google Scholar 

  • Weller, G., C. R. Bentley, D. H. Elliot, L. J. Lanzerotti and P. J. Webber, 1987: Laboratory Antarctica: Research Contributions to global problems. Science, 238, 1361–1367.

    Article  Google Scholar 

  • Whitehead, J. A., 1987: Dense water off Continents. Nature, 327, 656.

    Article  Google Scholar 

  • Zwally, H. J., C. L. Parkingson and J. C. Comiso, 1983: Variability of Antarctic sea ice and changes in carbon dioxide. Science, 220, 1005–1012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 British Crown Copyright

About this chapter

Cite this chapter

Hoffert, M.I. (1990). Climatic Change and Ocean Bottom Water Formation: Are We Missing Something?. In: Schlesinger, M.E. (eds) Climate-Ocean Interaction. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2093-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2093-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7440-7

  • Online ISBN: 978-94-009-2093-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics