Skip to main content

Micropropagation

  • Chapter

Abstract

Micropropagation is the true-to-type propagation of a selected genotype using in vitro culture techniques. Most often micropropagation is also associated with mass production at a competitive price.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Capellades MQ (1989) Histological and ecophysiological study of the changes occurring during the acclimatization of in vitro cultured roses. PhD-thesis, State Univ Gent (Belgium) 98 pp.

    Google Scholar 

  • Cleland WW (1964) Dithiothreitol, a new protective reagent for SH-groups, Biochemistry 3: 480–485.

    Article  PubMed  CAS  Google Scholar 

  • Cresswell RJ, Nitsch C (1975) Organ culture of Eucalyptus grandis, Planta 125: 87–90.

    Article  Google Scholar 

  • Debergh PC (1988) Improving mass propagation of in vitro plantlets. In: Organizing Committee of Int Symp High Technology in Protected Cultivation (Ed) Horticulture in high technological era — special lectures (pp 47–57). See Ed. Tokyo, Japan.

    Google Scholar 

  • Debergh PC, De Wael J (1977) Mass propagation of Ficus lyrata, Acta Hort 78: 361–364.

    Google Scholar 

  • Debergh PC, Maene LJ (1981) A scheme for commercial propagation of ornamental plants by tissue culture, Scientia Hort 14: 335–345.

    Article  Google Scholar 

  • Debergh PC, Maene LJ (1989) Dracaena and Cordyline. In: Ammirato PV, Evans DA, Sharp WR, Bajaj YPS (Eds) Handbook of plant cell culture, Vol 5 (pp 337–351) Mc Graw-Hill Book Cy New York.

    Google Scholar 

  • De Proft MP, Maene LJ, Debergh PC (1985) Carbon dioxide and ethylene evolution in the culture atmosphere of Magnolia cultured in vitro, Physiol Plant 65: 375–379.

    Article  Google Scholar 

  • Economou AS, Read PE (1980) Effect of benzyladenine pretreatments on shoot proliferation from petunia leaf segments cultured in vitro, Proc Plant Growth Reg Working Grp 7: 96–103.

    Google Scholar 

  • Economou AS, Read PE (1982) Effect of NAA on shoot production in vitro from BA-pretreated petunia leaf explants, J Amer Soc Hort Sci 107: 504–506.

    CAS  Google Scholar 

  • Enjalric F, Carron MP, Lardet L (1988) Contamination of primary cultures in tropical areas: the case of Hevea brasiliensis, Acta Hort 225: 57–65.

    Google Scholar 

  • Evers PW (1987) Correlations within the tree. In: Bonga JM, Durzan DJ (Eds) Cell and tissue culture in forestry, Vol 2 (pp 218–229) Martinus Nijhoff Publ.

    Chapter  Google Scholar 

  • Franclet A, Boulay M, Bekkaoui F, Fouret Y, Verschoore-Martouzet B, Walker N (1987) Rejuvenation. In: Bonga JM, Durzan DJ (Eds) Cell and tissue culture in forestry Vol I (pp 232–248) Martinus Nijhoff Publ.

    Google Scholar 

  • Fujiwara K, Kozai T, Watanabe I (1987) Fundamental studies on the environment in plant tissue culture vessels. 3. Measurements of carbon dioxide gas concentration in closed vessels containing tissue cultured plantlets and estimates of net photosynthetic rates of the plantlets, J Agr Met 43: 21–30.

    Article  Google Scholar 

  • Gavinlertvatana P, Read PE, Wilkins HF (1980) Control of ethylene synthesis and action by silver nitrate and rhizobitoxine in petunia leaf sections cultured in vitro, J Amer Soc Hort Sci 105: 304–307.

    CAS  Google Scholar 

  • Gavinlertvatana P, Read PE, Wilkins HF, Heins R (1982) Ethylene levels in flask atmospheres of Dahlia pinnata Cav. leaf segments and callus cultured in vitro, J Amer Soc Hort Sci 107: 3–6.

    CAS  Google Scholar 

  • George EF, Sherrington PD (1984) Plant propagation by tissue culture. Exegetics Ltd, Basingstoke 709 pp.

    Google Scholar 

  • Heide OM (1968) Auxin level and regeneration of Begonia leaves, Planta 81: 153–159.

    Article  CAS  Google Scholar 

  • Heide OM (1969) Interaction of growth retardants and temperature in growth, flowering, regeneration and auxin activity of Begonia x cheimantha Everett, Physiol Plant 22: 1001–1012.

    Article  CAS  Google Scholar 

  • John A, Murray BW (1981) Micropropagation of Sitka spruce (Picea sitchensis). In: AFOCEL (Ed) Colloque international sur la culture in vitro des essences forestières (pp 65–70) AFOCEL Fontainebleau Publ.

    Google Scholar 

  • Johnson BB (1978) In vitro propagation of Gloxinia from leaf explants, HortScience 13: 149–150.

    Google Scholar 

  • Ko CJ (1986) The effect of temperature on in vitro bulblet formation of Hyacinthus orientalis L. MSc-Thesis, University of Minnesota.

    Google Scholar 

  • Kozai T, Fujiwara K, Watanabe I (1986) Fundamental studies on environments in plant tissue culture vessels. 2. Effects of stoppers and vessels on gas exchange rates between inside and outside of vessels closed with stoppers, J Agr Met 42: 119–127.

    Article  Google Scholar 

  • Maene LJ (1985) Optimalisering van de overgang van weefselteeltplantjes naar in vivo omstandigheden (pp 1–221) PhD-thesis, State Univ Gent, Belgium.

    Google Scholar 

  • Maene L, Debergh P (1985) Liquid medium additions to established tissue cultures to improve elongation and rooting in vivo, Plant Cell Tissue Organ Culture 5: 23–33.

    Article  CAS  Google Scholar 

  • Maene LJ, Debergh PC (1986) Optimisation of plant micropropagation, Med Fac Landbouww Gent 51: 1479–1488.

    Google Scholar 

  • Margara J, Piollat MT (1985) Evolution de l’aptitude à l’organogenèse in vitro à partir de feuilles de Saintpaulia ionantha au cours des cultures successives, C R Acad Sc Paris 301: 265–268.

    CAS  Google Scholar 

  • McComb JA, Newton S (1981) Propagation of kangaroo paws using tissue culture, J Hort Sc 56: 181–183.

    Google Scholar 

  • McCown BH, Zeldin EL, Pinkalla HA, Dedolph RR (1988) Nodule culture: a developmental pathway with high potential for regeneration, automated micropropagation, and plant metabolite production from woody plants. In: Hanover JW, Keathley DE (Eds) Genetic manipulation of woody plants (pp 149–166) Plenum Press New York London.

    Google Scholar 

  • McCown DD (1986) Plug systems for micropropagules. In: Zimmerman RH, Griesbach RJ, Hammerschlag FA, Lawson RH (Eds) Tissue culture as a plant production system for horticultural crops (pp 53–60) Martinus Nijhoff Publ Dordrecht, Boston, Lancaster.

    Google Scholar 

  • Miles GE (1988) Robotic transplanting. In: Organising Committee Int Symp High Technology in Protected Cultivation (Ed) Horticulture in high technolgy era (pp 75–86). See Ed. Tokyo, Japan.

    Google Scholar 

  • Miller LR, Murashige T (1976) Tissue culture propagation of tropical foliage plants, In Vitro 12: 797–813.

    Google Scholar 

  • Murashige T (1974a) Plant propagation through tissue cultures, Annu Rev Plant Physiol 25: 135–166.

    Article  CAS  Google Scholar 

  • Murashige T (1974b) Propagation through tissue cultures, Hort Science 9: 2–3.

    Google Scholar 

  • Nitsch JP, Strain GC (1969) Effet de diverses cytokinines sur le brunissement d’expiants de canne à sucre, C R Acad Sci Paris 268: 806–809.

    CAS  Google Scholar 

  • Pierik RLM, Ruibing MA (1973) Regeneration of bulblets on bulb scale segments of hyacinth in vitro, Neth J Agric Sci 21: 129–138.

    Google Scholar 

  • Pierik RLM, Steegmans HHM (1976) Vegetative propagation of Anthurium scherzerianum shoot through callus cultures, Scientia Hort 4: 291–292.

    Article  Google Scholar 

  • Pierik RLM, Jensen JLM, Maasdam A, Binnendijk CM (1975) Optimalization of gerbera plantlet production from excised capitulum expiants, Scientia Hort 3: 351–357.

    Article  Google Scholar 

  • Pierik RLM (1976) Nieuwe methode voor vegetatieve vermeerdering van Freesia in kweekbuizen, Vakblad bloemisterij 38: 61.

    Google Scholar 

  • Preece JE (1987) Treatment of the stock plant with plant growth regulators to improve propagation success, Hort Science 22: 754–759.

    CAS  Google Scholar 

  • Rancillac M, Nourrisseau JG, Navatel JC, Roudeillac P (1987) Influence de la multiplication in vitro sur le comportement du plant de fraisier en France. In: Boxus P, Larvor P (Eds) In vitro culture of strawberry plants (pp 55–73) CEC Directorate General, Report EUR 10871.

    Google Scholar 

  • Read PE (1988) Stock plants influence micropropagation success, Acta Hort 226: 41–52.

    Google Scholar 

  • Read PE, Yang Q (1985) Novel plant growth regulator delivery systems for in vitro culture of horticultural crops, Acta Hort 212: 55–59.

    Google Scholar 

  • Read P, Gavinlertvatana P, Suriyajantratong P, Garton S, Brenner M (1978) Stock plants affect tissue culture success. In: Hughes K, Henke R, Constantin M (Eds) Propagation of higher plants through tissue culture (p 249). Univ Tennessee, Knoxville.

    Google Scholar 

  • Rhodes JM, Wooltorton LSC (1978) The biosynthesis of phenolic compounds in wounded plant storage tissues. In: Kahl G (Ed) Biochemistry of wounded plant tissues (pp 243–308) W de Gruyter & Co, Berlin-New York.

    Google Scholar 

  • Scott MA (1987) Weaning of cultured plants. In: Alderson PG, Dulforce WM (Eds) Micropropagation in horticulture — Practice and commercial problems (pp 173–182) Proc Univ Nottingham (UK).

    Google Scholar 

  • Senawi BMT (1985) Evaluation of the difficulties in in vitro propagation of Theobroma cacao L. and Cocos nucifera L. PhD-thesis State Univ Gent (Belgium) 124 pp.

    Google Scholar 

  • Stimart DP, Ascher PD(1981) Developmental responses of Lilium longiflorum bulblets to constant or alternating temperatures in vitro, J Amer Soc Hort Sci 106: 450–454.

    Google Scholar 

  • Stonier T (1971) The role of auxin protectors in autonomous growth. In: CNRS (Ed) Colloques internationaux CNRS, n° 193. Les cultures de tissus de plantes (pp 118–130) CNRS, Paris.

    Google Scholar 

  • Van der Linde PCG, Van Aartrijk J (1986) Micropropagation of specific crops: Bulbs. In: Alderson PG, Dullforce WM (Eds) Symposium — Micropropagation in Horticulture — Practise and commercial problems (pp 123–134) Proc Univ Nottingham (UK).

    Google Scholar 

  • Vanderschaeghe AM, Debergh PC (1987) Technical aspects of the control of the relative humidity in tissue culture containers, Med Fac Landbouww Rijksuniv Gent 52: 1429–1437.

    Google Scholar 

  • Vanderschaeghe AM, Debergh PC (1988) Automatisation of tissue culture manipulations in the final stages, Acta Hort 227: 399–401.

    Google Scholar 

  • Vanderschaeghe AM, Debergh PC (1989) Influence of explant type on micropropagation of woody species, Med Fac Landbouww Rijksuniv Gent 54: 1763–1768.

    Google Scholar 

  • Vogelmann JC, Bornman CH, Nissen (1984) Uptake of benzyladenine in expiants of Picea abies and Pinus sylvestris, Physiol Plant 61: 513–517.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Debergh, P.C., Read, P.E. (1991). Micropropagation. In: Debergh, P.C., Zimmerman, R.H. (eds) Micropropagation. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2075-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2075-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-0819-5

  • Online ISBN: 978-94-009-2075-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics