Skip to main content

Spatial overlap of a predatory copepod, Acanthocyclops robustus, and its prey in a shallow eutrophic lake

  • Chapter
  • 94 Accesses

Part of the book series: Developments in Hydrobiology ((DIHY,volume 60))

Abstract

Spatial overlap between Acanthocyclops robustus, with special emphasis on the adult females, and other zooplankton in one basin of a shallow (approximate depth of 2 m) eutrophic lake was studied.

Horizontal distribution patterns were analysed on two dates. On both dates, most taxa examined showed large-scale patchiness between the three sections of the lake basin (approximate length of 1.2 km). Similarly, most taxa, with the important exception of the adult female Acanthocyclops robustus, were significantly patchily distributed on the small-scale (i.e. within sections). However, the intensity of such patchiness was, in general, relatively low. There was no consistent evidence of aggregation by the adult females or copepodites and adult males (the latter two were considered together) of the predator in such small-scale prey patches.

Diurnal vertical distribution patterns were studied on two 24–25 hour periods. The first period was characterized by calm weather. Adult female, and perhaps male, Acanthocyclops robustus, Chydorus sphaericus, Bosmina Coregoni, Keratella cochlearis, Asplanchna species, Polyarthra vulgaris and Pompholyx sulcata seemed to show diurnal migration patterns, while seven other taxa showed consistent preferences for particular depths. Only copepod nauplii and Daphnia species were approximately evenly distributed. Negative correlations were found between the vertical distributions of the adult female predator and seven of the seventeen potential prey recognized.

The first half of the second period was characterised by strong winds which abated during the second half. Most zooplankton taxa showed inconsistent heterogeneous vertical distributions or were homogeneously distributed with vertical heterogeneity developing towards the end of the period. Only Bosmina longirostris and Daphnia species seemed to show vertical migration patterns. Thus, no consistent vertical segregation between predator and prey was detected.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bayly, I. A. E., 1986. Aspects of diel vertical migration in zooplankton, and its enigma variations. In P. DeDecker & W. D. Williams (eds), Limnology in Australia. CSIRO Australia and Junk Publishers, Dordrecht: 349–368.

    Chapter  Google Scholar 

  • Boikova, O. S., 1986. Feeding of fish in Lake Glubokoe. Hydrobiologia 141: 95–111.

    Article  Google Scholar 

  • Brandl, Z. & C. H. Fernando, 1981. The impact of predation by cyclopoid copepods on zooplankton. Verh. int. Ver. Limnol. 21: 1573–1577.

    Google Scholar 

  • Charnov, E. L., 1976. Optimal foraging: the marginal value theorem. Theor. Popul. Biol. 9: 129–136.

    Article  PubMed  CAS  Google Scholar 

  • Christie, P., 1983. A taxonomical reappraisal of the Daphnia hyalina complex (Crustacea: Cladocera): an experimental and ecological approach. J. Zool., Lond. 199: 75–100.

    Article  Google Scholar 

  • Cushing, D. H., 1962. Patchiness. Rapp.P.-v. Reun. Cons. Pern. int. Explor. Mer. 153: 152–164.

    Google Scholar 

  • Dagg, M., 1977. Some effects of patchy food environments on copepods. Limnol. Oceanogr. 22: 99–107.

    Article  Google Scholar 

  • Dumont, H. J., 1967. A five-day study of patchiness in Bosmina coregoni (Baird) in a shallow eutrophic lake. Mem. Ist. ital. Idrobiol. 22: 81–103.

    Google Scholar 

  • Dumont, H. J., 1972. A competition-based approach to the reverse vertical migration in zooplankton and its implications, chiefly based on a study of the interactions of the rotifer Asplanchna priodonta (Gosse) with several Crustacea Entomostraca. Int. Revue.ges. Hydrobiol. 57: 1–38.

    Article  Google Scholar 

  • Elliott, J. M., 1983. Some methods for the statistical analysis of samples of benthic invertebrates. Freshwater Biological Association Scientific Publication No. 25: 160 pp.

    Google Scholar 

  • Enright, J. T., 1977. Diurnal vertical migration: Adaptive significance and timing. Part 1. Selective advantage: A metabolic model. Limnol. Oceanogr. 22: 856–872.

    Article  Google Scholar 

  • Evans, M. S. & D. W. Sell, 1983. Zooplankton sampling strategies for environmental studies. Hydrobiologia 99: 215–223.

    Article  Google Scholar 

  • Fedorenko, A. Y., 1975. Instar and species-specific diets in two species of Chaoborus. Limnol. Oceanogr. 20: 238–249.

    Article  Google Scholar 

  • Folt, C. L., 1985. Predator efficiencies and prey risks at high and low prey densities. Verh. int. Ver. Limnol. 22: 3210–3214.

    Google Scholar 

  • Folt. C. L., 1987. An experimental analysis of costs and benefits of zooplankton aggregation. In W. C. Kerfoot & A. Sih (eds), Predation: Direct and indirect impacts on aquatic communities. The University Press of New England, Hanover (N.H.); Lond.: 300–314.

    Google Scholar 

  • George, D. G., 1983. Interrelations between the vertical distribution of Daphnia and chlorophyll a in two large limnetic enclosures. J. Plankton Res. 5: 457–475.

    Article  CAS  Google Scholar 

  • George, D. G. & R. W. Edwards, 1973. Daphnia distribution within Langmuir circulations. Limnol. Oceanogr. 18: 798–800.

    Article  Google Scholar 

  • George, D. G. & R. W. Edwards, 1976. The effect of wind on the distribution of chlorophyll a and crustacean zooplankton in a shallow eutrophic reservoir. J. appl. Ecol. 13: 667–690.

    Article  CAS  Google Scholar 

  • Glagolev, S. M., 1986. Species composition of Daphnia in Lake Glubokoe with notes on the taxonomy and geographical distribution of some species. Hydrobiologia 141:55–82.

    Article  Google Scholar 

  • Gliwicz, M. Z., 1986. Predation and the evolution of vertical migration in zooplankton. Nature 320: 746–748.

    Article  Google Scholar 

  • Guma’s, S. A., 1978. The food and feeding habits of young perch, Perca fluviatilis, in Windermere. Freshwat. Biol. 8: 177–187.

    Article  Google Scholar 

  • Hairston, N. G., Jr., 1980. The vertical distribution of diaptomid copepods in relation to body pigmentation. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover (N. H.); Lond.: 98–110.

    Google Scholar 

  • Hart, R. C., 1978. Horizontal distribution of the copepod Pseudodiaptomus hessei in subtropical Lake Sibaya. Freshwat. Biol. 8: 415–421.

    Article  Google Scholar 

  • Hassell, M. P. & R. M. May, 1974. Aggregation of predators and insect parasites and its effect on stability. J. anim. Ecol. 43: 567–594.

    Article  Google Scholar 

  • Hutchinson, G. E., 1967. A treatise on limnology, Vol. 2. J. Wiley & Sons, N.Y., 1115 pp.

    Google Scholar 

  • Iwao, S. I. & E. Kuno, 1971. An approach to the analysis of aggregation pattern in biological populations. In G. P. Patil et al. (eds), Statistical Ecology. Vol. I. Penn. State Univ. Press: 461–513.

    Google Scholar 

  • Jakobsen, P. J. & G. H. Johnsen, 1987. Behavioural response of the water flea Dahpnia pulex to a gradient in food concentration. Anim. Behav. 35: 1891–1895.

    Article  Google Scholar 

  • Jamieson, C. D., 1980. The predatory feeding of copepodid stages III to adult Mesocyclops leuckarti (Claus). In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover (N.H.); Lond.: 518–537.

    Google Scholar 

  • Johnsen, G. H. & P. J. Jakobsen, 1987. The effect of food limitation on vertical migration in Daphnia longispina. Limnol. Oceanogr. 32: 873–880.

    Google Scholar 

  • Karabin, A., 1978. The pressure of pelagic predators of the genus Mesocyclops (Copepoda, Crustacea) on small zooplankton. Ekol. pol. 26: 241–257.

    Google Scholar 

  • Klemetsen, A., 1970. Plankton swarms in Lake Gjokvatn, East Finmark. Astarte, J. arctic Biol. 3: 83–85.

    Google Scholar 

  • Lane, P. A., 1975. The dynamics of aquatic ecosystems: A comparative study of the structure of four zooplankton communities. Ecol. Monogr. 45: 307–336.

    Article  Google Scholar 

  • Lloyd, M., 1967. Mean crowding. J. anim. Ecol. 36: 1–30.

    Article  Google Scholar 

  • MacArthur, R. H. & E. R. Pianka, 1966. On the optimal use of a patchy environment. Am. Nat. 100: 603–609.

    Article  Google Scholar 

  • Malone, B. J. & D. J. McQueen, 1983. Horizontal patchiness in zooplankton populations in two Ontario kettle lakes. Hydrobiologia 99: 101–124.

    Article  Google Scholar 

  • Matsumura-Tundisi, T., J. G. Tundisi & L. S. Tavares, 1984. Diel migration and vertical distribution of Cladocera in Lake D. Helvecio (Minas Gerais, Brazil). Hydrobiologia 113: 299–306.

    Article  Google Scholar 

  • McCallum, I. D., 1979. A simple method of taking a sub-sample of zooplankton, N.Z. J. mar. Freshwat. Res. 13: 559–560.

    Article  Google Scholar 

  • McNaught, D. C. & A. D. Hasler, 1964. Rate of movement of populations of Daphnia in relation to changes in light intensity. J. Fish. Res. Bd Can. 21: 291–318.

    Google Scholar 

  • Melville, G. E. & E. J. Maly, 1981. Vertical distributions and zooplankton predation in a small temperate pond. Can. J. Zool. 59: 1720–1725.

    Article  Google Scholar 

  • Miracle, M. R., 1974. Niche structure in freshwater zooplankton: a principal components approach. Ecology 55: 1306–1316.

    Article  Google Scholar 

  • Nie, H. W. de & J. Vijverberg, 1985. The accuracy of population density estimates of copepods and cladecerans, using data from Tjeukemeer (The Netherlands) as an example. Hydrobiologia 124: 3–11.

    Article  Google Scholar 

  • Nie, H. W. de, H. J. Bromley & J. Vijverberg, 1980. Distribution patterns of zooplankton in Tjeukemeer, The Netherlands. J. Plankton Res. 2: 317–334.

    Article  Google Scholar 

  • Ohman, M. D., B. W. Frost & E. B. Cohen, 1983. Reverse diel vertical migration: an escape from invertebrate predators. Science 220: 1404–1407.

    Article  PubMed  CAS  Google Scholar 

  • Omori, M. & W. M. Hamner, 1982. Patchy distribution of zooplankton: behavior, population assessment and sampling problems. Mar. Biol. 72: 193–200.

    Article  Google Scholar 

  • Pearre, S., Jr., 1979. Problems of detection and interpretation of vertical migration. J. Plankton Res. 1: 29–42.

    Article  Google Scholar 

  • Pyke, G. H., H. R. Pulliam & E. L. Charnov, 1977. Optimal foraging: a selective review of theory and tests. Q. Rev. Biol. 52: 137–154.

    Article  Google Scholar 

  • Ringelberg, J., 1964. The positively phototactic reaction of Daphnia magna Straus: a contribution to the understanding of vertical migration. Neth. J. Sea Res. 2: 319–406.

    Article  Google Scholar 

  • Roche, K. F., 1987. Post-encounter vulnerability of some rotifer prey types to predation by the copepod Acanthocyclops robustus. Hydrobiologia 147: 229–233.

    Article  Google Scholar 

  • Roche, K. F., Prey features affecting ingestion rates by Acanthocyclops robustus (Copepoda: Cyclopoida) on zooplankton. In prep.

    Google Scholar 

  • Schulze, P. C. & A. S. Brooks, 1987. The possibility of predator avoidance by Lake Michigan zooplankton. Hydrobiologia 146: 47–56.

    Article  Google Scholar 

  • Siegel, S., 1956. Non-parametric statistics for the behavioural sciences. McGraw-Hill Kogakusha, Ltd., Lond., 312 pp.

    Google Scholar 

  • Smyly, W. J. P., 1968. Some observations on the effect of sampling techniques under different conditions on numbers of some freshwater planktonic Entomostraca and Rotifera caught by a water bottle. J. nat. Hist. 2: 569–575.

    Article  Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1981. Biometry. Freeman Press, San Fransisco, 776 pp.

    Google Scholar 

  • Stemberger, R. S., 1974. Temporal and spatial distribution of planktonic rotifers in Milwaukee Harbor and adjacent Lake Michigan. Proc. 17th Conf. Great Lakes Res., Int. Assoc. Great Lakes Res.: 120–134.

    Google Scholar 

  • Stemberger, R. S. & J. E. Gannon, 1977. Multivariate analysis of rotifer distributions in Lake Huron. Arch. Hydrobiol. 8: 38–42.

    Google Scholar 

  • Stenson, J. A. E., 1982. Fish impact on rotifer community structure. Hydrobiologia 87: 57–64.

    Article  Google Scholar 

  • Stewart, L. J. & D. G. George, 1987. Environmental factors influencing the vertical migration of planktonic rotifers in a hypereutrophic tarn. Hydrobiologia 147: 203–208.

    Article  Google Scholar 

  • Stich, H-B. & W. Lampert, 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293: 396–398.

    Article  Google Scholar 

  • Szlauer, L., 1968. Investigations upon ability in plankton crustacea to escape the net. Pol. Arch. Hydrobiol. 15: 79–86.

    Google Scholar 

  • Tessier, A. J., 1983. Coherence and horizontal movements of patches of Holopedium gibberum (Cladocera). Oecologia 60: 71–75.

    Article  Google Scholar 

  • Tonolli, V., 1958. Ricerche sulla microstruttura di distribuzione dello zooplancton del Lago Maggiore. Mem. Ist. ital. Idrobiol. 10: 125–152.

    Google Scholar 

  • Van Doorselaere, M., 1982. Fytoplanktononderzoek van het Donkmeer (Overmere, Oost-Vlaanderen). Masters thesis, State University of Ghent, Belgium: 130 pp. (in Dutch).

    Google Scholar 

  • Van Guelpen, L., D. F. Markle & D. J. Duggan, 1982. An evaluation of accuracy, precision, and speed of several zooplankton subsampling techniques. J. Cons. int. Explor. Mer. 40: 226–236.

    Google Scholar 

  • Vijverberg, J. & W. L. T. van Densen, 1984. The role of the fish in the foodweb of Tjeukemeer, The Netherlands. 22: 891–896.

    Google Scholar 

  • Wiebe, P. H., 1971. A computer model study of zooplankton patchiness and its effects on sampling error. Limnol. Oceanogr. 16: 29–38.

    Article  Google Scholar 

  • Wiebe, P. H. & W. R. Holland, 1968. Plankton patchiness: Effects of repeated net tows. Limnol. Oceanogr. 13: 315–321.

    Article  Google Scholar 

  • Williamson, C. E., 1981. Foraging behavior of a freshwater copepod; frequency changes in looping behavior at high and low prey densities. Oecologia 50: 332–336.

    Article  Google Scholar 

  • Williamson, C. E., 1984. Laboratory and field experiments on the feeding ecology of the cyclopoid copepod, Mesocyclops edax. Freshwat. Biol. 14: 575–585.

    Article  Google Scholar 

  • Williamson, C. E. & R. E. Magnien, 1982. Diel vertical migration of Mesocyclops edax: implications for predation rate estimates. J. Plankton Res. 4: 329–339.

    Article  Google Scholar 

  • Williamson, C. E. & M. E. Stoeckel. Estimating predation risk in zooplankton communities: the importance of vertical overlap. This volume.

    Google Scholar 

  • Wolf, H. G., 1987. Interspecific hybridization between Daphnia hyalina, D. galeata, and D. cucullata and seasonal abundances of these species and their hybrids. Hydrobiologia 145: 213–217.

    Article  Google Scholar 

  • Yen, J., 1985. Selective predation by the carnivorous marine copepod Euchaeta elongata: Laboratory measurements of predation rates verified by field observations of temporal and spatial feeding patterns. Limnol. Oceanogr. 30: 577–597.

    Article  Google Scholar 

  • Young, S., V. A. Taylor & E. Watts, 1984. Visual factors in Daphnia feeding. Limnol. Oceanogr. 29: 1300–1308.

    Article  Google Scholar 

  • Zankai, N. P. & J. E. Ponyi, 1971. The horizontal distribution of rotifera plankton in Lake Balaton. Annal. Biol. Tihany 38: 285–304.

    Google Scholar 

  • Zaret, T. M. & J. S. Suffern, 1976. Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr. 21: 804–813.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. J. Dumont J. G. Tundisi K. Roche

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Roche, K. (1990). Spatial overlap of a predatory copepod, Acanthocyclops robustus, and its prey in a shallow eutrophic lake. In: Dumont, H.J., Tundisi, J.G., Roche, K. (eds) Intrazooplankton Predation. Developments in Hydrobiology, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2067-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2067-5_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7428-5

  • Online ISBN: 978-94-009-2067-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics