Skip to main content

Factors affecting the nutrient efficiency of plants

  • Chapter
Genetic Aspects of Plant Mineral Nutrition

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 42))

Abstract

Shortage of resources and the environmental problems of intensive agriculture form the economic and ecological background of searching for more nutrient efficient plants. Breeding for nutritional efficiency, however, is still hampered by the lack of reliable screening criteria. Therefore, there is a necessity to define properties and metabolic activities of significance to nutrient efficiency. The following aspects will be discussed, paying special attention to areas for further research:

  1. 1.

    Root parameters related to nutrient uptake: Morphological root properties and physiological functions which may influence nutrient uptake are now reasonably well understood. However, work is still needed to evaluate the significance of root parameters under limited nutrient supply and to solve problems encountered in their determination.

  2. 2.

    Shoot-root relations: Nutrient uptake by the roots, their translocation to the shoots and subsequent redistribution among plant organs are governed by a complex exchange of substrates and information between shoots and roots.

  3. 3.

    Root-soil interactions: Topics of special interest are the root products affecting soil nutrient availability, the interaction between root exudates and microbial nutrient turnover, and the root enzymes related to the availability of organically bound nutrients in the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando T, Yoshida S and Nishiyama I 1983 Nature of oxidizing power of rice roots. Plant and Soil 72, 57–71.

    Article  CAS  Google Scholar 

  • Barber S A 1962 A diffusion and mass flow concept of soil nutrient availability. Soil Sci. 93, 39–49.

    Article  CAS  Google Scholar 

  • Barber S A 1984 Soil Nutrient Bioavailability: A Mechanistic Approach. Wiley-Interscience, New York.

    Google Scholar 

  • Bray R H 1954 A nutrient mobility concept of soil-plant relationships. Soil Sci. 78, 9–22.

    Article  CAS  Google Scholar 

  • Brown M E 1972 Plant growth substances produced by microorganisms of soil and rhizosphere. J. Appl. Bacteriol. 35, 443–451.

    Article  CAS  Google Scholar 

  • Brown J C and Ambler J E 1973 Reductants released by roots of Fe-deficient soybeans. Agron. J. 65, 311–314.

    Article  CAS  Google Scholar 

  • Chang C W and Bandurski R S 1964 Exocellular enzymes of corn roots. Plant Physiol. 39, 60–64.

    Article  PubMed  CAS  Google Scholar 

  • Clark R B 1983 Plant genotype differences in the uptake, translocation, accumulation and use of mineral elements required for plant growth. Plant and Soil 72, 175–196.

    Article  CAS  Google Scholar 

  • Clarkson D T and Hanson J B 1980 The mineral nutrition of higher plants. Annu. Rev. Plant Physiol. 31, 239–298.

    Article  CAS  Google Scholar 

  • Cram W J and Pitman M G 1972 The action of abscisic acid on iron uptake and water flow in plant roots. Aust. J. Biol. Sci. 25, 1125–1132.

    CAS  Google Scholar 

  • Craswell E T and Godwin D C 1984 The efficiency of nitrogen fertilizers applied to cereals in different climates. In Advances in Plant Nutrition, Vol. 1. Eds. P B Tinker and A Läuchli. pp 1–55. Praeger, New York.

    Google Scholar 

  • Curl E A and Truelove B 1986 The Rhizosphere. Springer-Verlag, Berlin.

    Google Scholar 

  • Epstein E and Hagen C E 1952 A kinetic study of the absorption of alkali cations by barley roots. Plant Physiol. 27, 457–474.

    Article  PubMed  CAS  Google Scholar 

  • Gabelmann W H and Gerloff G C 1983 The search for and interpretation of genetic controls that enhance plant growth under deficiency levels of a macronutrient. Plant and Soil 72, 335–350.

    Article  Google Scholar 

  • Gardner W K, Barber D A and Parbery D G 1983 The aquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil root interface is enhanced. Plant and Soil 70, 107–114.

    Article  CAS  Google Scholar 

  • Graham D R 1984 Breeding for nutritional characteristics in cereals. Adv. Plant Nutr. 1, 57–102.

    Google Scholar 

  • Hedley M J, White R E and Nye P H 1982 Plant induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings. III. Changes in L-value, soil phosphate fractions and Phosphatase activity. New Phytol. 91, 45–56.

    Article  CAS  Google Scholar 

  • Helal H M 1990 Varietal differences in root Phosphatase activity as related to the utilization of organic phosphates. Plant and Soil 123, 161–163.

    Article  CAS  Google Scholar 

  • Helal H M and Sauerbeck D 1983 Method for studying turnover processes in soil layers of different proximity to roots. Soil Biol. Biochem. 15, 223–225.

    Article  Google Scholar 

  • Helal H M and Sauerbeck D 1985 P-Konzentration und P-Formen in der Bodenlösung in Abhängigkeit von der Wurzelnähe. Mitteilgn. Dtsch. Bodenkdl. Gesellsch. 43, 57–62.

    Google Scholar 

  • Helal H M and Sauerbeck D 1986 Effect of plant roots on carbon metabolism of soil microbial biomass. Z. Pflanzenernähr. Bodenkd. 149, 181–188.

    Article  CAS  Google Scholar 

  • Helal H M and Sauerbeck D 1987a Phosphataseaktivität von Pflanzenwurzeln in Abhängigkeit von der P-Versorgung. VDLUFA-Schriftenreihe 23, 195–201.

    Google Scholar 

  • Helal H M and Sauerbeck D 1987b Direct and indirect influences of plant roots on organic matter and phosphorus turnover in soil. INTECOL Bulletin 15, 49–58.

    Google Scholar 

  • Helal H M and Sauerbeck D 1987c Techniques for sampling and investigation of rhizosphere soil. In Methodology in Soil-K Research, pp 219–230. Intern. Potash Institute, Bern.

    Google Scholar 

  • Hendriks L, Ciaassen N and Jungk A 1981 Phosphatverarmung des wurzelnahen Bodens und Phosphataufnahme von Mais und Raps. Z. Pflanzenernähr. Bodenkd. 144, 486–499.

    Article  CAS  Google Scholar 

  • Jenkinson D S and Powlson D S 1976 The effect of biocidal treatments on metabolism in soil. V. A method for measuring soil bioass. Soil. Biol. Biochem. 8, 209–213.

    Article  CAS  Google Scholar 

  • Loughman B C, Roberts S G and Goodwin-Bailey C I 1983 Varietal differences in physiological and biochemical responses to changes in the ionic environment. Plant and Soil 72, 245–259.

    Article  CAS  Google Scholar 

  • Low H A 1970 A study of the phosphate-dissolving bacteria in the root region of wheat and lupin. Phytophylactica 2, 21–26.

    Google Scholar 

  • Lüttge U and Higinbotham N 1979 Transport in Plants. Springer-Verlag, New York.

    Google Scholar 

  • Marschner H 1989 Root-induced changes in the availability of micronutrients in the rhizosphere. In Plant Roots: The Hidden Half. Eds. A Eshel, U Kafkafi and Y Waisel. Marcel Dekker, In press.

    Google Scholar 

  • Marschner H and Römheld V 1983 In-vivo measurement of root-induced pH-changes at the soil-root interface: Effect of plant species and nitrogen source. Z. Pflanzenphysiol. 111, 241–251.

    CAS  Google Scholar 

  • Marschner H, Roemheld V, Horst W J and Martin P 1986 Root-induced changes in the rhizosphere: Importance for the mineral nutrition of plants. Z. Pflanzenernähr. Bodenkd. 149, 441–456.

    Article  CAS  Google Scholar 

  • Mengel K 1983 Responses of various crop species and cultivars to fertilizer application. Plant and Soil 72, 305–319.

    Article  Google Scholar 

  • Moghimi A, Tate M E and Oades J M 1978 Characterization of rhizosphere products especially 2-ketogluconic acid. Soil Biol. Biochem. 10, 283–287.

    Article  CAS  Google Scholar 

  • Nielsen N E 1983 Plant parameters controlling the efficiency of nutrient uptake from the soil, pp 199–219. In Efficient Use of Fertilizers in Agriculture. United Nations Economic Commission for Europe. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Nielsen N E and Schjorring J K 1983 Efficiency and kinetics of phosphorus uptake from soil by various genotypes. Plant and Soil 72, 225–230.

    Article  CAS  Google Scholar 

  • Nye P H 1966 The measurement and mechanism of ion diffusion in soil. I. The relation between self-diffusion and bulk diffusion. J. Soil Sci. 17, 16–23.

    Article  CAS  Google Scholar 

  • Nye P H and Kirk G 1987 The mechanism of rock phosphate solubilization in the rhizosphere. Plant and Soil 100, 127–134.

    Article  CAS  Google Scholar 

  • Pearson C J and Steer B T 1977 Daily changes in nitrate uptake and metabolism in Capsicum annuum. Planta 137, 107–112.

    Article  CAS  Google Scholar 

  • Römheld V and Marschner H 1983 Mechanism of iron uptake by peanut plants. I. FeIII reduction, chelate splitting and release of phenolics. Plant Physiol. 71, 949–954.

    Article  PubMed  Google Scholar 

  • Römheld V and Marschner H 1986 Mobilization of iron in the rhizosphere of different plant species. Adv. Plant Nutrition 2, 155–204.

    Google Scholar 

  • Rovira A D 1969 Plant root exudates. Bot. Rev. 35, 35–57.

    Article  CAS  Google Scholar 

  • Saric M R 1983 Theoretical and practical approaches to the genetic specifity of mineral nutrition of plants. Plant and Soil 72, 137–150.

    Article  CAS  Google Scholar 

  • Sauerbeck D and Helal H M 1986 Plant root development and photosynthate consumption depending on soil compaction. XIII. Congress Intern. Soc. Soil Sci. Transactions 3, 948–949.

    Google Scholar 

  • Sauerbeck D and Johnen G B 1976 Der Umsatz von Pflanzenwurzeln im Laufe der Vegetationsperiode und dessen Beitrag zur Bodenatmung. Z. Pflanzenernähr. Bodenkd. 139, 315–328.

    Article  Google Scholar 

  • Silberbush M and Barber S A 1983 Sensitivity analysis of parameters used in simulating potassium uptake with a mechanistic mathematical model. Agron. J. 75, 851–854.

    Article  CAS  Google Scholar 

  • Smith M S and Tiedje J M 1979 The effect of roots on soil denitrification. Soil Sci. Soc. Am. J. 43, 951–955.

    Article  CAS  Google Scholar 

  • Smith N S 1934 Response of inbred lines and crosses in maize to variations of nitrogen and phosphorus supplied as nutrients. J. Am. Soc. Agron. 26, 775–780.

    Google Scholar 

  • Sprengel C 1839 Die Lehre vom Dünger. Leipzig.

    Google Scholar 

  • Steffens D and Mengel K 1979 Das Aneignungsvermögen von Lolium perenne im Vergleich zu Trifolium pratense für Zwischenschicht-Kalium der Tonminerale. Landwirtsch. Forsch. Sonderheft 36, 120–127.

    Google Scholar 

  • Torrey J G 1976 Root hormones and plant growth. Annu. Rev. Plant Physiol. 27, 435–459.

    Article  CAS  Google Scholar 

  • Torrey J G and Clarkson D T 1975 Development and Function of Roots. Academic Press, London.

    Google Scholar 

  • Ward K J, Klepper B, Rickmann R W and Almaras R 1978 Quantitative estimation of living wheat root lengths in soil cores. Agron. J. 70, 675–677.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sauerbeck, D.R., Helal, H.M. (1990). Factors affecting the nutrient efficiency of plants. In: El Bassam, N., Dambroth, M., Loughman, B.C. (eds) Genetic Aspects of Plant Mineral Nutrition. Developments in Plant and Soil Sciences, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2053-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2053-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7421-6

  • Online ISBN: 978-94-009-2053-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics