Advertisement

Reconstructing 3D Objects from Cross-Sections

  • Larry L. Schumaker
Part of the NATO ASI Series book series (ASIC, volume 307)

Abstract

This paper is concerned with the construction of a mathematical model of a three dimensional object, starting from cross-sectional data. The problem is to build a model which is suitable for displaying and manipulating an image of the object using a graphics workstation. This problem is of great importance in a number of fields, particularly in medical imaging. While it has been intensely studied by various researchers, it seems that approximation theorists have had little involvement. The purpose of this survey article is to review the state-of-the-art, with the hope that some of the recently developed methods in curve and surface fitting and Computer-Aided Geometric Design may be useful in designing new and improved reconstruction techniques.

Keywords

Computer Graphic Surface Reconstruction Delaunay Triangulation Reconstruction Problem Wire Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akima, H. A., A new method of interpolation and smooth surface fitting based on local procedures, J. Assoc. Comput. Mach. 17 (1970), 589–602.zbMATHGoogle Scholar
  2. 2.
    Artzy, E., Display of three-dimensional information in computed tomography, Comp. Graphics and Image Proc. 2 (1975), 196–198.Google Scholar
  3. 3.
    Artzy, E., G. Frieder and G. T. Herman, The theory design, implementation and evaluation of a three-dimensional surface detection algorithm, Comp. Graphics and Image Proc. 3 (1976), 529–572.Google Scholar
  4. 4.
    Ashkar, G. P. and J. W. Modestino, The contour extraction problem with biomedical applications, in Proceedings of 1977 IEEE Conf. on Pattern Recognition and Image Processing, 1977, 216–221.Google Scholar
  5. 5.
    Barnhill, R. E., B. R. Piper, and S. E. Stead, Surface representation for the graphical display of structured data, The Visual Computer 1 (1985), 108–111.Google Scholar
  6. 6.
    Barsky, B. A., A description and evaluation of various 3D models, IEEE Comp. Graph. Appl. 4 (1984), 38–52.Google Scholar
  7. 7.
    Bartels, R. H., J. C. Beatty and B. A. Barsky, An Introduction to the Use of Splines in Computer Graphics, Morgan Kaufmann, Los Altos, 1987.Google Scholar
  8. 8.
    Beeker, E., Smoothing of shapes designed with free-form surfaces, Comput. Aided Design 18 (1986), 224–232.Google Scholar
  9. 9.
    Berge, C., The Theory of Graphs and Its Applications, Wiley, New York, 1967.Google Scholar
  10. 10.
    Blinn, J., L. Carpenter, J. Lane, and T. Whitted, Scan line methods for displaying parametrically defined surfaces, Commun. ACM 23 (1980), 23–34.Google Scholar
  11. 11.
    Bloomenthal, Jules, Polygonization of implicit surfaces, Xerox Report CSL-87-2, 1987.Google Scholar
  12. 12.
    Boehm, W., G. Farin and J. Kahmann, A survey of curve and surface methods in CAGD, Comput. Aided Geom. Design 1 (1984), 1–60.zbMATHGoogle Scholar
  13. 13.
    Boissonnat, J. D., Triangulations of minimal area as 3D object models, in Proc. 6th Int. Conf. on Pattern Recognition, 1982, 830–833.Google Scholar
  14. 14.
    Boissonnat, J. D., Representing 2D and 3D shapes with the Delaunay triangulation, in Proc. 7th Int. Conf. on Pattern Recognition, 1984, 745–748.Google Scholar
  15. 15.
    Boissonnat, J. D., Shape reconstruction from planar cross sections, in Proceedings, IEEE Conf. on Computer Vision and Pattern Recognition, 1985, 393–397.Google Scholar
  16. 16.
    Boissonnat, J. D., Geometric surfaces for 3-dimensional shape representation, ACM Trans. Graphics 3 (1984), 266–286.Google Scholar
  17. 17.
    Boissonnat, J. D., Shape reconstruction from planar cross sections, Computer Vision, Graphics and Image Processing 44 (1988), 1–29.Google Scholar
  18. 18.
    Boissonnat, J. D. and O. D. Faugeras, Triangulation of 3D objects, in Proceedings of the 1981 International Joint Conference on Artificial Intelligence, 1981, 658–660.Google Scholar
  19. 19.
    de Boor, C., A Practical Guide to Splines, Springer Verlag, New York, 1978.zbMATHGoogle Scholar
  20. 20.
    Bowyer, A., Computing Dirichlet tessellations, Computer J. 24 (1981), 162–166.MathSciNetGoogle Scholar
  21. 21.
    Brevdo, L., S. Sideman and R. Beyar, A simple approach to the problem of 3D-reconstruction, Computer Vision, Graphics and Image Processing 37 (1987), 420–427.Google Scholar
  22. 22.
    Brinkley, J., W. Mortiz and D. Baker, Ultrasonic three-dimensional imaging and volume from a series of arbitrary sector scans, Ultrasound in Med. and Biol. 4 (1978), 317–327.Google Scholar
  23. 23.
    Brooks, R. A. and G. DiChiro, Theory of image reconstruction of computed tomography, Radiology 117 (1975), 561–572.Google Scholar
  24. 24.
    Budinger, T. F. and G. T. Gullberg, Three-dimensional reconstruction in nuclear medicine emission imaging, IEEE Trans. Nuclear Science, NS-21, 1974.Google Scholar
  25. 25.
    Catmull, E. E., A subdivision algorithm for computer display of curved surfaces, Rpt. UTEC-CSc-74-133, University of Utah, 1974.Google Scholar
  26. 26.
    Catmull, E. E. and J. H. Clark, Recursively generated B-spline surfaces on arbitrary topological meshes, Comput. Aided Design 10 (1978), 350–355.Google Scholar
  27. 27.
    Catmull, E. E. and A. R. Smith, 3D transformations of images in scanline order, in Computer Graphics’78, SIGGRAPH Vol. 14, 1980, 279–285.Google Scholar
  28. 28.
    Chandler, R. E., A tracking algorithm for implicitly defined curves, IEEE Comp. Graph. Appl. 8 (1988), 83–89.Google Scholar
  29. 29.
    Choi, B. K. and H. Y. Shin, Extended Farin’s VC 1 conditions and construction of triangular VC 1 surfaces, IECAM TR-2, Korea Advanced Inst. Science and Tech., 1986.Google Scholar
  30. 30.
    Choi, B. K., H. Y. Shin, Y. I. Yoon and J. W. Lee, Triangulation of scattered data in 3D space, Comput. Aided Design 20 (1988), 239–248.zbMATHGoogle Scholar
  31. 31.
    Cho, A. H., General view of 3-D image reconstruction and computerized transverse axial tomography, IEEE Trans. Nuclear Science, NS-21, 1974.Google Scholar
  32. 32.
    Christiansen, H.N. and T. W. Sederberg, Conversion of complex contour line definitions into polygonal element mosaics, Computer Graphics 13 (1978), 187–192.Google Scholar
  33. 33.
    Christofides, N., Graph Theory, An Algorithmic Approach, Academic Press, New York, 1975.zbMATHGoogle Scholar
  34. 34.
    Clark, J. H., A fast scan-line algorithm for rendering parametric surfaces, Computer Graphics 13 (1979), 174.Google Scholar
  35. 35.
    Cline, A. K., Curve fitting using splines under tension, Atmospheric Tech. 3 (1973), 60–65.Google Scholar
  36. 36.
    Cline, A. K., Curve fitting in one and two dimensions using splines under tension, Commun. ACM 17 (1974), 213–220.MathSciNetGoogle Scholar
  37. 37.
    Cline, A. K., Six subprograms for curve fitting using splines under tension, Commun. ACM 17 (1974), 221–223.MathSciNetGoogle Scholar
  38. 38.
    Cline, H. E., W. E. Lorensen, S. Ludke, C. R. Crawford and B. C. Teeter, Two algorithms for the reconstruction of surfaces from tomograms, Medical Physics, 1988.Google Scholar
  39. 39.
    Cohen, E. and C. L. O’Dell, A data dependent parameterization for spline approximation, in Mathematical Methods in Computer Aided Geometric Design, T. Lyche and L. Schumaker (eds.), Academic Press, N. Y., 1989, 155–166.Google Scholar
  40. 40.
    Cook, P. N. et al, Three-dimensional reconstruction from cross-sections for medical applications, in Proceedings, 14th Hawaii Int. Conf. on System Sci., 1981, 358–389.Google Scholar
  41. 41.
    Cook, P. N. et al, A three-dimensional display system for diagnostic imaging applications, IEEE Comp. Graph. Appl. 3 (1983), 13–20.Google Scholar
  42. 42.
    Dekker, D. L., R. L. Piziali and E. Dong, A system for ultrasonically imaging the human heart in three dimensions, Comput. Biomed. Res. 7 (1974), 544–553.Google Scholar
  43. 43.
    Dierckx, P., Algorithms for smoothing data on the sphere with tensor product splines, Computing 32 (1984), 319–342.MathSciNetzbMATHGoogle Scholar
  44. 44.
    Doo, D. W. H., A subdivision algorithm for smoothing down irregularly shaped polyhedrons, in Proceedings of Interactive Techniques in Computer-Aided Design, Bologna, 1978, 157–165.Google Scholar
  45. 45.
    Doo, D. W. H. and M. A. Sabin, Behaviour of recursive division surfaces near extraordinary points, Comput. Aided Design 10 (1978), 356–360.Google Scholar
  46. 46.
    Drebin, R. A., L. Carpenter and P. Hanrahan, Volume Rendering, ACM Trans. Computer Graphics 22 (1988), 65–74.Google Scholar
  47. 47.
    Drebin, R. A., E. K. Fishman and D. Magid, Volumetric three dimensional image rendering: thresholding vs. non-thresholding techniques, Radiology 165 (1987), 131–137.Google Scholar
  48. 48.
    Eiho, S., M. Kuwahara, N. Adada, S. Sasayama, M. Takahashi, and C. Kawai, Reconstruction of 3-D images of pulsating left ventricle from two dimensional sector scan echocardiograms of apical long axis view, Comput. Cardiology, (1981), 19–24.Google Scholar
  49. 49.
    Farin, G., Designing C 1 surfaces consisting of triangular cubic patches, Comput. Aided Design 14 (1982), 253–256.Google Scholar
  50. 50.
    Farin, G., Triangular Bernstein-Bézier patches, Comput. Aided Geom. Design 3 (1986), 83–127.MathSciNetGoogle Scholar
  51. 51.
    Faugeras, O., M. Hebert, P. Mussi and J. Boissonnat, Polyhedral approximation of 3-D objects without holes, Computer Vision, Graphics and Image Processing 25 (1984), 169–183.Google Scholar
  52. 52.
    Fischman, E. K., R. A. Drebin, D. Magid et al, Volumetric rendering techniques: applications for 3-dimensional imaging of the hip, Radiology 163 (1987), 737–738.Google Scholar
  53. 53.
    de Floriani, L., Constrained Delaunay triangulation for pattern recognition, in 9th International Conference on Pattern Recognition, 1988, 566–569.Google Scholar
  54. 54.
    de Floriani, L., A pyramidal data structure for triangle-based surface description, IEEE Comp. Graph. Appl., 1989, 67–78.Google Scholar
  55. 55.
    Foley, T. A., A triangular surface patch with optimal error bounds, in Approximation Theory V, C. Chui, L. Schumaker, and J. Ward (eds.), Academic Press, New York, 1986, 343–346.Google Scholar
  56. 56.
    Foley, T. A., T. N. T. Goodman, and K. Unsworth, An algorithm for shape preserving parametric interpolating curves with G 2 continuity, in Mathematical Methods in Computer Aided Geometric Design, T. Lyche and L. Schumaker (eds.), Academic Press, N. Y., 1989, 249–259.Google Scholar
  57. 57.
    Fuchs, H., Z. M. Kedem and S. P. Uselton, Optimal surface reconstruction from planar contours, Commun. ACM 20 (1977), 693–702.MathSciNetzbMATHGoogle Scholar
  58. 58.
    Ganapathy, S. et al, Ultrasonic imaging techniques for real-time in-service inspection of nuclear power reactors, Nuclear Regulatory Commission Rpt. NUREG/CR-2154, 1981.Google Scholar
  59. 59.
    Ganapathy, S. and T. G. Dennehy, A new general triangulation method for planar contours, ACM Trans. Computer Graphics 16 (1982), 69–75.Google Scholar
  60. 60.
    Garden, K. L. and R. A. Robb, 3-D reconstruction of the heart from few projections: a practical implementation of the McKinnon-Bates algorithm, IEEE Trans. Medical Imaging MI-5 (1986), 233–239.Google Scholar
  61. 61.
    Geiser, E., S. Lupkiewicz, L. Christie, M. Ariet, D. Connetta, and C. Conti, A framework for three-dimensional time-varying reconstruction of the human left ventrical: Sources and error and estimation of their magnitude, Comput. Biomed. Res 13 (1980), 225–241.Google Scholar
  62. 62.
    Gmelig Meyling, R. H. J., Least-squares B-spline surface reconstruction in tomography, Amsterdam, 1984.Google Scholar
  63. 63.
    Gmelig Meyling, R. H. J., Three-dimensional reconstruction from serial cross-sections by set-valued interpolation, Report 754, Univ. of Twente, 1988.Google Scholar
  64. 64.
    Gmelig Meyling, R. H. J., R. W. Houweling and P. R. Pfluger, A software package for a smooth B-spline approximation of a closed surface, user manual, Amsterdam, 1984.Google Scholar
  65. 65.
    Gmelig Meyling, R. H. J. and P. R. Pfluger, B-spline approximation of a closed surface, IMA J. Numer. Anal. 7 (1987), 73–96.MathSciNetzbMATHGoogle Scholar
  66. 66.
    Gholizadeh, B., Representation par triangulation de la surface d’objects tridimensionels, dissertation, Univ. Paris Sud, 1985.Google Scholar
  67. 67.
    Gordon, R. and G. T. Herman, Three dimensional reconstruction from projections: review of algorithms, in International Review of Cytology, G. Bourne and J. Daniel (eds.), Academic Press, New York, 1974, 111–151.Google Scholar
  68. 68.
    Harris, L. D., R. A. Robb, T. S. Yuen, and E. L. Ritman, Noninvasive numerical dissection and display of anatomic structure using computerized X-ray tomography, in Proceedings SPIE 152, 1978, 10–18.Google Scholar
  69. 69.
    Hayes, J. G. and J. Halliday, The least-squares fitting of a cubic spline interpolation, J. Approx. Theory 16 (1976), 105–122.Google Scholar
  70. 70.
    Hefferman, P. B. and R. A. Robb, Towards improved reconstruction of the heart from small numbers of projections, Comp. Cardiol. 3 (1982), 149–152.Google Scholar
  71. 71.
    Herman, G. T., A relaxation method for reconstructing objects from noisy X-rays, Math. Programming 8 (1975), 1–19.MathSciNetzbMATHGoogle Scholar
  72. 72.
    Herman, G. T., Image reconstruction from Projections, Academic Press, New York, 1980.zbMATHGoogle Scholar
  73. 73.
    Herman, G. T., V. Lakshiminarayanan, and A. Naparstek, Convolution reconstruction techniques for divergent beams, Comput. Biol. Med. 6 (1976), 259–271.Google Scholar
  74. 74.
    Herman, G. T. and H. K. Liu, Display of three-dimensional information in computed tomography, J. Computer Assisted Tomography 1 (1977), 155–160.Google Scholar
  75. 75.
    Herman, G. T. and H. K. Liu, Dynamic boundary surface detection, Computer Graphics and Image Processing 7 (1978), 130–138.Google Scholar
  76. 76.
    Herman, G. T. and H. K. Liu, Three-dimensional display of human organs from computed tomograms, Computer Graphics and Image Processing 9, (1979), 1–21.Google Scholar
  77. 77.
    Herman, G. T., R. A. Reynolds, and J. K. Udupa, Computer techniques for the reconstruction of 3D data on a 2D display, in Proceedings SPIE 367, 1982, 3–14.Google Scholar
  78. 78.
    Hermeline, F., Triangulation automatique d’un polyedre en dimension n, RAIRO Anal. Numer. 76 (1982), 211–212.MathSciNetGoogle Scholar
  79. 79.
    Herron, G. J., A characterization of certain C 1 discrete triangular interpolants, SIAM J. Numer. Anal. 22 (1985), 811–819.MathSciNetzbMATHGoogle Scholar
  80. 80.
    Herron, G. J., Smooth closed surfaces with discrete triangular interpolants, Comput. Aided Geom. Design 2 (1985), 297–306.MathSciNetzbMATHGoogle Scholar
  81. 81.
    Hoehne, K. H., R. Delapaz, R. Bernstein, and R. Taylor, Combined surface display and reformatting for the three-dimensional analysis of tomographic data, Investigative Radiology 22 (1987), 658–664.Google Scholar
  82. 82.
    Huijsmans, D. P., Closed 2D contour algorithms for 3D reconstruction, in Eurographics’83, P. J. W. ten Hagen (ed.), Elsevier, 1983, 157–168.Google Scholar
  83. 83.
    Johnson, D. B., Efficient algorithms for shortest paths in sparse networks, J. Assoc. Comput. Mach. 24 (1977), 1–13.MathSciNetzbMATHGoogle Scholar
  84. 84.
    Joseph, P. M., An improved algorithm for reprojecting rays through pixel images, IEEE Trans. Medical Imaging MI-1 (1982), 191–196.Google Scholar
  85. 85.
    Kajiya, J. T. and B. P. von Herzen, Ray tracing volume densities, in Computer Graphics’84, SIGGRAF Vol. 18, 1984, 165–174.Google Scholar
  86. 86.
    Kaufman, A., Efficient algorithms for 3D scan-conversion of parametric curves, surfaces and volumes, Computer Graphics 21 (1987), 171–179.MathSciNetGoogle Scholar
  87. 87.
    Kaufman, A. and R. Bakalash, Memory and processing architecture for 3D voxel-based imagery, IEEE Comp. Graph. Appl. 8 (1988), 10–23.Google Scholar
  88. 88.
    Kaufman, A. and E. Shimony, 3D scan-conversion algorithms for voxel-based graphics, in Proc. ACM Workshop on Interactive 3D Graphics, Chapel Hill, 1986, 45–76.Google Scholar
  89. 89.
    Kehtarnavaz, N. and R. J. P. de Figueiredo, Recognition of 3D curves based on curvature and torsion, in Proc. SPIE Conf. Optics, Electro-Optics, and Sensors, 1988, 357–364.Google Scholar
  90. 90.
    Kehtarnavaz, N. and R. J. P. de Figueiredo, A framework for surface reconstruction from 3D contours, Computer Vision, Graphics and Image Processing 42 (1988), 32–47.Google Scholar
  91. 91.
    Kehtarnavaz, N., E. A. Phillips, and R. J. P. de Figueiredo, A novel surface reconstruction and display method for cardiac PET imaging, IEEE Trans. Medical Imaging MI-3 (1984), 108–115.Google Scholar
  92. 92.
    Kehtarnavaz, N., L. R. Simar and R. J. P. de Figueiredo, A sytactic/semantic technique for surface reconstruction from cross-sectional contours, Computer Vision Graphics and Image Processing 42 (1988), 399–409.Google Scholar
  93. 93.
    Keppel, E., Approximating complex surfaces by triangulation of contour lines, IBM J. Res. Develop. 19 (1975), 2–11.MathSciNetzbMATHGoogle Scholar
  94. 94.
    Lawson, C. L., C 1 surface interpolation for scattered data on a sphere, Rocky Mountain J. Math. 14 (1984), 177–202.MathSciNetzbMATHGoogle Scholar
  95. 95.
    Levin, D., Multidimensional reconstruction by set-valued approximation, IMA J. Numer. Anal. 6 (1986), 173–184.MathSciNetzbMATHGoogle Scholar
  96. 96.
    Levinthal, C. and R. Ware, Three-dimensional reconstruction from serial sections, Nature 236 (1972), 207–210.Google Scholar
  97. 97.
    Levoy, M., Display of surfaces from volume data, IEEE Comp. Graph. Appl. 8 (1988), 29–37.Google Scholar
  98. 98.
    Lin, W. C, C. C. Liang and C. T. Chen, Dynamic elastic interpolation for 3D medical image reconstruction from serial cross sections, IEEE Trans. Medical Imaging 7 (1988), 225–232.Google Scholar
  99. 99.
    Liu, H. K., Two and three-dimensional boundary detection, Computer Graphics and Image Processing 6 (1977), 123–134.Google Scholar
  100. 100.
    Lorensen, W. E. and H. E. Cline, Marching cubes: A high resolution 3D surface construction algorithm, in Computer Graphics’87, SIGGRAPH, 1987, 163–169.Google Scholar
  101. 101.
    Louis, A. K. and F. Natterer, Mathematical problems of computerized tomography, in Proc. IEEE 71, 1983, 379–389.Google Scholar
  102. 102.
    Maitre, H., J. Lopez-Krahe, A. Clainchard and F. Schmitt, Appareil automatique pour la numérisation d’une surface tridimensionnelle, BREVET No. 81-24418, 1981.Google Scholar
  103. 103.
    Martin, W. N. and J. K. Aggarwal, Volumetrie descriptions of objects from multiple views, IEEE Trans. Pattern Anal, and Machine Intelligence PAMI-5 (1983), 150–158.Google Scholar
  104. 104.
    Matsumoto, M., M. Inoue, S. Tamura, K. Tanaka, and H. Abe, Three dimensional echocardiography for spatial visualization and volume calculation of cardiac structures, J. Clin. Ultrasound 9 (1981), 157–165.Google Scholar
  105. 105.
    Mazziotta, J. C. and K. H. Huang, Three-dimensional reconstruction and display with biological applications in neuron ultrastructure and computerized tomography, Amer. Fed. Inform. Process. Soc. 45 (1976), 241–250.Google Scholar
  106. 106.
    McKinnon, G. C. and R. H. T. Bates, Towards imaging the beating heart usefully with a conventional CT scanner, IEEE Trans. Biomedical Engrg. BME-28 (1981), 123–127.Google Scholar
  107. 107.
    Meagher, D. J., Efficient synthetic image generation of arbitrary 3-D objects, in Proc. IEEE Pattern Recog. Image Processing, 1982, 473–478.Google Scholar
  108. 108.
    Merickle, M., 3D reconstruction: the registration problem, Computer Vision, Graphics and Image Processing 42 (1988), 206–219.Google Scholar
  109. 109.
    Merickle, M. and M. McCarthy, Registration of contours for three-dimensional reconstruction, in Proceedings, Seventh Annual Conf. of the IEEE Eng. in Med. and Biol. Soc., 1985, 616–620.Google Scholar
  110. 110.
    Moritz, W., A. Pearlman, D. McCabe, D. Medema, M. Ainsworth, and M. Boles, An ultrasonic technique for imaging the ventricle in three dimensions and calculating its volume, IEEE Trans. Biomedical Engineering BME-30 (1983), 482–491.Google Scholar
  111. 111.
    Müller, H. and B. Geiger, Rekonstruktion komplexer Körper aus ebenen Schnitten und deren hochqualitative graphische Darstellung, in Informatik-Fachbericht 156, Springer Verlag, 1987.Google Scholar
  112. 112.
    Natterer, F., The Mathematics of Computerized Tomography, Wiley, New York, 1988.Google Scholar
  113. 113.
    Nielson, G. M. and T. Foley, Knot selection for parametric spline interpolation, in Mathematical Methods in Computer Aided Geometric Design, T. Lyche and L. Schumaker (eds.), Academic Press, N. Y., 1989, 261–271.Google Scholar
  114. 114.
    Nielson, G. M. and R. Ramaraj, Interpolation over a sphere based upon a minimum norm network, Comput. Aided Geom. Design 4 (1987), 41–57.MathSciNetzbMATHGoogle Scholar
  115. 115.
    Nikravesh, P., K. Chandran, D. Skorton, N. Pandian, and R. Kerber, 3-D finite element reconstruction of left ventricular geometry from cross-sectional echocardiographic recordings, in Proc. Biomech. Symp. New York, AMD 43, W. Van Buskirk (ed.), Amer. Soc. Mech. Eng., New York, 1981, 15–18.Google Scholar
  116. 116.
    Ohashi, T., T. Uchiki and M. Tokoro, A three-dimensional shaded display method for voxel-based representation, in Proc. Eurographics’85, 1985, 221–232.Google Scholar
  117. 117.
    Omwa, A. A., Reconstruction of a closed body by set-valued interpolation, Twente Univ., 1987.Google Scholar
  118. 118.
    O’Rourke, J., Polyhedra of minimal area as 3D object models, in Proc. 1981 Int. Joint Conference on AI, 1981, 664–666.Google Scholar
  119. 119.
    O’Rourke, J. and N. Badler, Decomposition of three-dimensional objects into spheres, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1 (1979), 295–305.Google Scholar
  120. 120.
    Pavlidis, T., Filling algorithms for raster graphics, Comp. Graphics and Image Proc. 10 (1979), 126–141.Google Scholar
  121. 121.
    Pavlidis, T., Algorithms for Graphics and Image Processing, Computer Science, Rockville, MD, 1982.Google Scholar
  122. 122.
    Piper, B., Visually smooth interpolation with triangular Bézier patches, in Geometric Modelling, G. Farin (ed.), SIAM, Philadelphia, 1987, 221–234.Google Scholar
  123. 123.
    Prothero, J. S. and J. W. Prothero, Three-dimensional reconstruction from serial sections, Comput. Biomedical Research 19 (1986), 361–373.Google Scholar
  124. 124.
    Renka, R. J., Interpolation of data on the surface of a sphere, ACM Trans. Math. Software 10 (1984), 417–436.MathSciNetzbMATHGoogle Scholar
  125. 125.
    Richard, C. W. and H. Hemami, Identification of three-dimensional objects using Fourier descriptors of the boundary curve, IEEE Trans. Systems Man. Cybernet SMC-4 (1974), 371–377.Google Scholar
  126. 126.
    Schlusselberg, D. S., W. K. Smith and D. J. Woodward, Three-dimensional display of medical image volumes, in Proc. NCGA, 1986, 114–123.Google Scholar
  127. 127.
    Schmidt, R. M., Fitting scattered surface data with large gaps, in Surfaces in Computer Aided Geometric Design, R. E. Barnhill and W. Boehm (eds.), North Holland, Amsterdam, 1983, 185–189.Google Scholar
  128. 128.
    Schmitt, F. J. M., B. A. Barsky, and W.-H. Du, An adaptive subdivision method for surface-fitting from sampled data, in SIGRAPH’86, ACM Vol. 20, 1986, 179–188.Google Scholar
  129. 129.
    Schmitt, F. and B. Gholizadeh, Adaptive polyhedral approximation of digitized surfaces, in SPIE Proceedings Vol 595 of Conference on Computer Vision for Robots, Cannes, 1985, 2–6.Google Scholar
  130. 130.
    Schmitt, F. H. Maitre, A. Clainchard and J. Lopez-Krahm, Acquisition and representation of real object surface data, in SPIE Proceedings Vol. 602 of Biostereometrics’85 Conference, Cannes, France, 1985, 2–6.Google Scholar
  131. 131.
    Schumaker, L. L., Spline functions: Basic theory, Wiley, New York, 1981.zbMATHGoogle Scholar
  132. 132.
    Schumaker, L. L., The use of spline functions for the polar representation of 3-dimensional objects, in Picture Processing, K. S. Fu and T. L. Kunii (eds.), Springer, N. Y., 1982, 96–106.Google Scholar
  133. 133.
    Schumaker, L. L., On shape preserving quadratic spline interpolation, SIAM J. Numer. Anal. 20 (1983), 854–864.MathSciNetzbMATHGoogle Scholar
  134. 134.
    Schumaker, L. L., Triangulation methods, in Topics in Multivariate Approximation, C. K. Chui, L. L. Schumaker, and F. Utreras (eds.), Academic Press, New York, 1987, 219–232.Google Scholar
  135. 135.
    Schumaker, L. L. and W. Volk, Efficient algorithms for evaluating multivariate polynomials, Comput. Aided Geom. Design 3 (1986), 149–154.zbMATHGoogle Scholar
  136. 136.
    Shantz, M., Surface definition for branching contour-defined objects, Comput. Graphics 15 (1981), 242–270.Google Scholar
  137. 137.
    Shantz, M. and G. D. McGann, Computational morphology: three-dimensional computer graphics for electron microscopy, IEEE Trans. Biomedical Engrg..Google Scholar
  138. 138.
    Skorton, D. J. and E. A. Geiser, Three-dimensional echocardiography geometric reconstruction, in Two-dimensional Echocardiography, J. Talano and J. Gardin (eds.), Grune & Stratton, New York, 1983, 357–369.Google Scholar
  139. 139.
    Sloan, K. R. and L. M. Hrechanyk, Surface reconstruction from sparse data, in IEEE Conf. on Pattern Recognition and Image Processing, 1981, 45–48.Google Scholar
  140. 140.
    Sloan, K. R. and J. Painter, From contours to surfaces: testbed and intial results, in Proceedings CHI + GI’87, Toronto, 1987, 115–120.Google Scholar
  141. 141.
    Sloan, K. R. and J. Painter, Pessimal guesses may be optimal: a counterintuitive search result, in IEEE Trans. Pattern Anal, and Machine Intelligence, 10, 1988, 949–955.Google Scholar
  142. 142.
    Smith, P. R., T. M. Peters and R. H. T. Bates, Image reconstruction from finite numbers of projections, J. Physics A 6 (1973), 361–382.Google Scholar
  143. 143.
    Srihari, S. N., Representation of three-dimensional digital images, Computing Surveys 4 (1981), 399–424.Google Scholar
  144. 144.
    Stevens, K. A., Inferring shape from contours across surfaces, in From Pixels to Predicates: Recent Advances in Computational and Robotic Vision, A. P. Pentland (ed.), Ablex Publishing, New Jersey, 1986, 93–110.Google Scholar
  145. 145.
    Sunguruff, A. and D. Greenberg, Computer generated images for medical applications, ACM Trans. Computer Graphics 12 (1978), 196–202.Google Scholar
  146. 146.
    Takala, T., User interface management system with geometric modeling capability: A CAD systems framework, IEEE Comp. Graph. Appl. 5 (1985), 42–50.Google Scholar
  147. 147.
    Terzopoulos, D., Multilevel reconstruction of visual surfaces: Variational principles and finite element representations, in Multiresolution Image Processing, A. Rosenfeld (ed.), Springer, Berlin, 1984.Google Scholar
  148. 148.
    Traas, C. R., Smooth approximation of functions on the sphere with splines, Computing 38 (1987), 177–184.MathSciNetzbMATHGoogle Scholar
  149. 149.
    Tuy, H. K. and L. T. Tuy, Direct 2-D display of 3-D objects, IEEE Computer Graphics and Applic. 4 (1984), 29–34.Google Scholar
  150. 150.
    Udupa, J. K., Interactive segmentation and boundary surface formation for 3-D digital images, Comput. Graphics Image Process. 18 (1982), 213–235.zbMATHGoogle Scholar
  151. 151.
    Udupa, J. K., Display of 3D information in discrete 3D scenes produced by computerized tomography, Proc. IEEE 71 (1983), 420–431.Google Scholar
  152. 152.
    Vannier, M. W., J. L. Marsh and J. O. Warren, Three dimensional computer graphics for craniofacial surgical planning and evaluation, ACM Trans. Computer Graphics 17 (1983), 263–273.Google Scholar
  153. 153.
    Wang, Y. F. and J. K. Aggarwal, Surface reconstruction and representation of 3-D scenes, Pattern Recognition 19 (1986), 197–207.Google Scholar
  154. 154.
    Wang, Y. F., M. J. Magee and J. K. Aggarwal, Matching three-dimensional objects using silhouettes, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6 (1984), 513–518.Google Scholar
  155. 155.
    Watson, D. F., Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes, Computer J. 24 (1981), 167–172.Google Scholar
  156. 156.
    Weinstein, M. and K. R. Castleman, Reconstructing 3-D specimens from 2-D section images, in Proc. SPIE-26, 1971, 131–138.Google Scholar
  157. 157.
    Woodward, C. D., Methods for cross-sectional design of B-spline surfaces, in Eurographics’86, A. Requicha (ed.), Elsevier, 1986, 129–142.Google Scholar
  158. 158.
    Wright, R. and J. Humbrecht, ISOSURF — an algorithm for plotting iso-valued surfaces of a function of three variables, ACM Trans. Computer Graphics 13 (1979), 182–189.Google Scholar
  159. 159.
    Wu, S. C, J. Abel, and D. Greenberg, An interactive computer graphics approach to surface representation, CACM 20 (1977), 703–712.zbMATHGoogle Scholar
  160. 160.
    Xu, S. B. and W. X. Lu, Surface reconstruction of 3D objects in computerized tomography, Computer Graphics and Image Processing, 270–278.Google Scholar
  161. 161.
    Zyda, M. J., et al, Surface construction from planar contours, Comp, and Graphics 11 (1987), 393–408.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Larry L. Schumaker
    • 1
  1. 1.Dept. of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations