Skip to main content

From Gases and Liquids to Fluids: The Formation of New Concepts during the Development of Theories of Liquids

  • Chapter
Greek Studies in the Philosophy and History of Science

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 121))

  • 264 Accesses

Abstract

In this paper I will attempt to discuss certain methodological and historical issues related to the development of the theory of liquids. What are liquids really? Are they denser gases or diluted solids? This last question may appear to be rather pedantic, yet its answer, at least partially, reflects the particular attitude one adopts for the reading of some of the more dramatic developments in physics and chemistry during the last one hundred years. Ever since the experiments of Thomas Andrews in the 1860’s where it was shown that the transition from the liquid state to the gaseous state is continuous, there were attempts to develop a theory of liguids based on the newly established kinetic theory of gases, and more specifically on Clausius’s virial theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. J. D. van der Waals, Over de Continuiteit van den gas en vloeistoftoestand (University of Leiden, 1873). It was translated into German in 1881, English in 1890, and French in 1894.

    Google Scholar 

  2. The only detailed biograpy of van der Waals is in Russian, by A. Ya. Kipnis and B. E. Yavelow, Johannes Diderik van der Waals 1837–1923 (Leningrad, Nauka, 1985). Oxford University Press plans to publish an English edition.

    Google Scholar 

  3. Also see S. G. Brush, The Kind of Motion We Call Heat, 2 volumes (New York, 1976)

    Google Scholar 

  4. J. S. Rowlinson, On the Continuity of the Gaseous and Liquid States (Amsterdam, 1988), especially the introduction.

    Google Scholar 

  5. T. Andrews, ‘On the continuity of the gaseous and liquid states’, the first Bakerian Lecture (1869), in Scientific Papers, pp. 296–317; edited with a memoir by P. G. Tait and Grum Brown (London, 1896). Andrews had shown that carbon dioxide, when above 30.9 degrees centrigrade cannot be converted to a liquid however large the applied pressure is; for temperatures below, liquefaction is achieved by an increase in pressure. This temperature was termed the critical temperature.

    Google Scholar 

  6. Van der Waals’s thesis, p. iv.

    Google Scholar 

  7. Kostas Gavroglu, ‘The reaction of the British physicists and chemists to van der Waals’s early work and the law of corresponding states’, to be published in Historical Studies in The Physical Sciences, 1990.

    Google Scholar 

  8. See, for example, E. Sarrau’s introductory essay to the French translation of van der Waals’s thesis.

    Google Scholar 

  9. J. C. Maxwell, ‘Capillary Action’, Encyclopedia Britannica, 9th edition, 1879

    Google Scholar 

  10. J. S. Rowlinson, ‘Legacy of van der Waals’, Nature 244 (1973), pp. 414–417

    Article  Google Scholar 

  11. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Oxford, 1982)

    Google Scholar 

  12. M. J. Klein, ‘The Historical Origins of the van der Waals Equation’, Physica 73 (1974), pp. 28–47.

    Article  Google Scholar 

  13. See Brush, The Kind of Motion… and Rowlinson Continuity….

    Google Scholar 

  14. R. J. E. Clausius, ‘Ueber einen auf die Warme anwendbaren mechaniachen Satz’, Annalen der Physik 141 (1870), pp. 124–130.

    Google Scholar 

  15. J. D. Van der Waals, ‘The Equation of State for Gases and Liquids’, in Nobel Lectures (Physics) 1901–1921 (New York, 1910), p. 256.

    Google Scholar 

  16. This is Chapter 12 in all the translations of his thesis and was included with van der Waals’s consent.

    Google Scholar 

  17. Ibid., p. 454.

    Google Scholar 

  18. Quoted in E. Cohen, ‘Kamerlingh Onnes Memorial Lecture’, Chemical Society Memorial Lectures (London, 1933), p. 1203.

    Google Scholar 

  19. James Clerk Maxwell, ‘van der Waals on the continuity of the gaseous and liquid states’, Nature 10 (October 15 1874), p. 478.

    Article  Google Scholar 

  20. Ibid., p. 477.

    Article  Google Scholar 

  21. Ibid., p. 471.

    Article  Google Scholar 

  22. Ibid., p. 478.

    Article  Google Scholar 

  23. Ibid., p. 478.

    Article  Google Scholar 

  24. Ibid., p. 479.

    Article  Google Scholar 

  25. J. C. Maxwell, ‘On the Dynamical Evidence of Molecular Constitution of Matter’, Journal of The Chemical Society 13 (1875), pp. 493–508.

    Article  Google Scholar 

  26. Maxwell, see note 11.

    Google Scholar 

  27. Maxwell, ‘Van der Waals on the continuity…’, p. 477.

    Google Scholar 

  28. J. Dewar, ‘Liquid Hydrogen’, Proc. Roy. Soc. XVI (1899), p. 13.

    Google Scholar 

  29. Kostas Gavroglu and Yorgos Goudaroulis, ‘Heike Kamerlingh Onnes’s researches at Leiden and their methodological implications’, Studies in the History and Philosophy of Science 19 (1988), pp. 243–274.

    Article  Google Scholar 

  30. F. E. Simon, ‘Zum Prinzip von der Unerreichbarkeit des absoluten Nullpunktes’, Zeit. Fur Physik 41 (1927), pp. 806–809

    Article  Google Scholar 

  31. In 1934 he pointed out that the high zeropoint energy of helium was responsible for keeping the substance, under saturation pressure, in the liquid phase down to absolute zero, See also F. E. Simon, ‘Behaviour of condensed helium near absolute zero’, Nature 133 (1934), p. 527.

    Article  Google Scholar 

  32. For details of both the experimental and theoretical developments see W. H. Keesom, op. cit.

    Google Scholar 

  33. F. London, Superfluids (New York, Wiley, 1950)

    Google Scholar 

  34. K. Gavroglu and Y. Goudaroulis, Methodological Aspects of Low Temperature Physics 1881–1956 (Dordrecht, Kluwer Academic Publishers, 1988).

    Google Scholar 

  35. The first hint of such an idea is found in W. H. Keesom and M. Wolfke, ‘Two different liquid states of helium’, Communications from the Physical Laboratory at the University of Leiden 190b (1927), pp. 17–22.

    Google Scholar 

  36. W. H. Keesom, ‘Quelques remarques en rapport avec l’anomalie de la chaleur specifique de l’helium au point lambda’, Communications from the Physical Laboratory at the University of Leiden (Supplement), 71e (1932), pp. 47–52.

    Google Scholar 

  37. K. Clusius, paper read in Breslau, 1933.

    Google Scholar 

  38. The zero-point energy may be estimated theoretically in two limiting cases: when the interatomic distance is less than an atomic diameter and when the interatomic distance is much greater than the atomic dimaeter. F. London used an interpolation formula between these limiting cases. See R. B. Dingle, Theories of helium IF, Philosophical Magazine (Supplement) 1 (1952), pp. 111–168.

    Google Scholar 

  39. F. London, ‘On condensed helium at absolute zero’, Proceedings of the Royal Society of London Al53 (1936), pp. 576–586.

    Google Scholar 

  40. “It is perhaps characteristic of the trend of thought at the time that F. London avoided the term ‘liquid’ in the title of his paper, referring to ‘condensed’ helium”, K. Mendelssohn, ‘Superconductivity’, Reports on Progress in Physics 10 (1946), p. 376.

    Google Scholar 

  41. F. London, ‘Superconductivity’, Reports on Progress in Physics 10 (1946), p. 581.

    Google Scholar 

  42. Ibid., pp. 582–583.

    Google Scholar 

  43. Heinz London, ‘Superfluid helium’, Year Book of the Physical Society of London (1960), pp. 34–48.

    Google Scholar 

  44. F. London’s first step was analogous to Sommerfeld’s treatment of the free electron gas. See A. Sommerfeld, ‘Zur Elektrontheorie der Metalle auf Grund der Fermischen Statistik’, Zeitschrift fur Physik 47 (1928), pp. 1–32. Many years before London proposed his theory, M. C. Johnson discussed the ‘degeneracy’ of the helium gas at a meeting of the Physical Society of London on February 14, 1930. Johnson used Fermi’s correction to the pressure of the ideal gas. J. E. Lennard-Jones pointed out that he should have used Bose-Einstein statistics: “the author considers only Fermi-Dirac statistics, whereas the theory indicates that helium atoms should obey the Bose-Einstein statistics. It would add to the value of his work if the author could consider the effect of the latter statistics on helium near the critical point”. This suggestion, however, was not taken up. M. C. Johnson, ‘A method of calculating the numerical equation of state for helium below 6 degrees absolute and of estimating the relative importance of gas degeneracy and interatomic forces’, Proceedings of the Physical Society of London 42 (1929–1930), pp. 170–179.

    Article  Google Scholar 

  45. A. Einstein, ‘Quantentheorie des einatomigen idealen Gases’, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Matematische Klasse (1924), pp. 261–267

    Google Scholar 

  46. A. Einstein, ‘Quantentheorie des einatomigen idealen Gases’, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Matematische Klasse (1925), pp. 3–16. Uhlenbeck in his doctoral thesis questioned Einstein’s result, and no one paid any attention to this odd phenomenon until London’s letter to Nature, and Uhlenbeck’s and Kahn’s paper in Physica where Uhlenbeck withdrew his objections.

    Google Scholar 

  47. F. London, ibid., (1925), p. 644.

    Google Scholar 

  48. F. London, ‘On the Bose-Einstein condensation’, Physical Review 54 (1938), pp. 947–954.

    Article  Google Scholar 

  49. L. Tisza, ‘Transport phenomena in helium II’, Nature 141 (1938), p. 913.

    Article  Google Scholar 

  50. L. Tisza, ‘Sur la supraconductibilité thermique de l’helium II et le statistique de Bose-Einstein’ Comptes Rendus 207 (1938), pp. 1035–1037.

    Google Scholar 

  51. J. F. Allen, ‘Liquid helium’, in F. Simon et al., Low Temperature Physics, Four Lectures (New York, Academic Press, 1952), p. 90.

    Google Scholar 

  52. International Conference on Fundamental Particles and Low Temperatures, Cavendish Laboratory, Cambridge 22–27 July 1946. Proceedings published by the Physical Society, 1947.

    Google Scholar 

  53. F. London, ‘The present state of the theory of liquid helium’, International Conference on Fundamental Particles and Low Temperatures, Cavendish Laboratory, Cambridge 22–27 July 1946. Proceedings published by the Physical Society, 1947, p. 1.

    Google Scholar 

  54. L. D. Landau, ‘The theory of superfluidity of helium II’, Journal of Physics (USSR) 5 (1941), pp. 71–79.

    Google Scholar 

  55. F. London to L. Tisza, May 8, 1946.

    Google Scholar 

  56. Ibid.

    Google Scholar 

  57. L. Tisza to F. London, November 26, 1946.

    Google Scholar 

  58. V. Peshkov, op. cit., note 25.

    Google Scholar 

  59. F. London to L. Tisza, September 10, 1946.

    Google Scholar 

  60. L. Tisza to F. London, October 10, 1946.

    Google Scholar 

  61. L. Tisza to F. London, October 17, 1946.

    Google Scholar 

  62. F. London to L. Tisza, November 21, 1946.

    Google Scholar 

  63. F. London, op. cit., note 25, p. 8.

    Google Scholar 

  64. V. Peshkov, ‘Determination of the velocity of propagation of the second sound in Helium II’ Journal of Physics (USSR) 10 (1946), pp. 389–398.

    Google Scholar 

  65. L. D. Landau, ‘On the theory of superfluidity of Helium II’, Journal of Physics (USSR) 11 (1947), pp. 9–92.

    Google Scholar 

  66. F. London to L. Tisza, March 10, 1949.

    Google Scholar 

  67. W. Osborne, B. Weinstock and B. M. Abraham, ‘Comparison of the flow of isotopically pure liquid Helium 3 and Helium 4’, Physical Review 75 (1949), p. 988.

    Article  Google Scholar 

  68. Ibid., p. 988.

    Article  Google Scholar 

  69. F. London to L. Tisza, February 24, 1949.

    Google Scholar 

  70. L. Tisza to F. London, March 13, 1949.

    Google Scholar 

  71. F. London, ‘The rare isotope of helium 3; A key to the strange properties of ordinary liquid helium 4’, Nature 163 (1949), pp. 694–696.

    Article  Google Scholar 

  72. L. D. Landau, ‘On the theory of superfluidity’, Physical Review 75 (1949), pp. 884–885.

    Article  Google Scholar 

  73. L. Tisza, ‘On the theory of superfluidity’, Physical Review 75 (1949), pp. 885–886.

    Article  Google Scholar 

  74. Ibid., p. 885.

    Article  Google Scholar 

  75. Ibid., p. 886.

    Article  Google Scholar 

  76. F. London to L. Tisza, March 17, 1949.

    Google Scholar 

  77. F. London to L. Tisza, November 28, 1950.

    Google Scholar 

  78. Ibid.

    Google Scholar 

  79. Ibid.

    Google Scholar 

  80. L. Tisza to F. London, December 5, 1950.

    Google Scholar 

  81. Ibid.

    Google Scholar 

  82. L. Tisza to F. London, August 10, 1951.

    Google Scholar 

  83. F. London, ‘Limitations of the two-fluid theory’, in R. Powers, editor, Proceedings of the International Conference on Low Temperature Physics (held in Oxford August 22–28, 1951), pp. 2–6.

    Google Scholar 

  84. Ibid., p. 3.

    Google Scholar 

  85. Ibid., p. 4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gavroglu, K. (1990). From Gases and Liquids to Fluids: The Formation of New Concepts during the Development of Theories of Liquids. In: Nicolacopoulos, P. (eds) Greek Studies in the Philosophy and History of Science. Boston Studies in the Philosophy of Science, vol 121. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2015-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2015-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7403-2

  • Online ISBN: 978-94-009-2015-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics