Skip to main content

Biochemistry and Applications of Alcohol Oxidase from Methylotrophic Yeasts

  • Chapter
Autotrophic Microbiology and One-Carbon Metabolism

Part of the book series: Advances in Autotrophic Microbiology and One-Carbon Metabolism ((AMOC,volume 1))

Abstract

The oxidation of methanol by yeasts has been reported by numerous authors and excellent reviews of the biochemistry of methanol assimilation have been written (Veenhuis et al. 1983; Large & Bamforth 1988). The first step in assimilation of methanol by methylotrophic yeasts is its oxidation to formaldehyde with concomitant production of hydrogen peroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauer R, 1985. Miles Laboratories Inc. EEC Patent number 0164008.

    Google Scholar 

  • Belghith H, Romette JL and Thomas D, 1987. An enzyme electrode for online determination of ethanol and methanol. Biotechnology and Bioengineering 30: 1001–1005.

    Article  PubMed  CAS  Google Scholar 

  • Bellion E and Goodman JM, 1987. Proton ionophores prevent assembly of a peroxisomal protein. Cell 48: 165–173.

    Article  PubMed  CAS  Google Scholar 

  • Berglin EH, Edland M-BK, Nyberg GK and Carlsson J, 1982. Potentiation by L-cysteine of the bacteriocidal effect of hydrogen peroxide in E. coli. Journal of Bacteriology 152: 81–88.

    PubMed  CAS  Google Scholar 

  • Brooke AG, Dijkhuizen L and Harder W, 1986. Regulation of flavin biosynthesis in the methylotrophic yeast H. polymorpha. Archives in Microbiology 145: 62–70.

    Article  CAS  Google Scholar 

  • Bruinenberg PG, Veenhuis M, van Dijken JP, Duine JA and Harder W, 1982. A quantitative analysis of selective inactivation of peroxisomal enzymes in the yeast H. polymorpha by high performance liquid chromatography. FEMS Letters 15: 45–50.

    Article  CAS  Google Scholar 

  • Bystrykh LV, Romanov VP, J Steczko and Trotsenko YA, 1989. Catalytic variability of alcohol oxidase from the methylotrophic yeast Hansenula polymorpha. Biotechnology and Applied Biochemistry 11: 184–192.

    CAS  Google Scholar 

  • Clarke LC Jr and Lyons C, 1962. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Science 105: 29–45.

    Google Scholar 

  • Clarke LC Jr, 1987. The enzyme electrode in Biosensors, Fundamental and Applications Ed. Turner APF, Karube I and Wilson G.

    Google Scholar 

  • Couderc CL and Baratti J, 1980. Oxidation of methanol by the yeast Pichia pastoris. Purification and properties of the alcohol oxidase. Agricultural and Biological Chemistry 44: 2279–2289.

    Article  CAS  Google Scholar 

  • Cox RB, Steer DC and Woodward JR, 1982. Unilever UK plc. UK patent number GB 2101 167. Distel B, Veenhuis M and Tabak HF, 1987. Import of alcohol oxidase into peroxisomes of Saccharomyces cerevisiae. The EMBO Journal 6: 3111–3116.

    Google Scholar 

  • Eggeling L, Paschke M and Sahm H, 1981. Process for the microbial production of alcohol oxidase. United States Patent number 4 250 261.

    Google Scholar 

  • Eggeling L and Sahm H, 1980. Regulation of alcohol oxidase synthesis in Hansenula polymorpha: over synthesis during growth on mixed substrates and induction by methanol. Archives of Microbiology 127: 119–124.

    Article  PubMed  CAS  Google Scholar 

  • Fuji T and Tonomura K, 1972. Oxidation of methanol, formaldehyde and formate by Candida sp. Agricultural and Biological Chemistry 36: 2297–2306.

    Article  Google Scholar 

  • Geissler J and Hemmerich P, 1981. Yeast methanol oxidases: an unusual type of flavoprotein. FEBS Letters 126: 152–156.

    Article  PubMed  CAS  Google Scholar 

  • Gibson TD and Woodward, 1986. Automated determination of ethanol using the enzyme alcohol oxidase. Analytical Proceedings 23: 360–362.

    CAS  Google Scholar 

  • Gibson TD and Woodward JR, 1988. Continuous, reliable on-line analysis of fermentation media by simple enzymic/spectrophotometric assays. Analytica Chimica Acta 213: 61–68.

    Article  CAS  Google Scholar 

  • Goodman JM, Scott CW, Donahue N and Atherton JP, 1984. Alcohol oxidase assembles posttranslationally into the peroxisome of Candida boidinii. Journal of Biological Chemistry 259: 8485–8493.

    PubMed  CAS  Google Scholar 

  • Goodman JM, Maher J, Silver PA, Pacifico A and Sanders D, 1986. The membrane proteins of the methanol-induced peroxisome of Candida boidinii. Journal of Biological Chemistry 261: 3464–3468.

    PubMed  CAS  Google Scholar 

  • Giuseppin MLF, 1988. PhD Thesis. Optimisation of methanol oxidase production by Hansenula polymorpha. University of Delft.

    Google Scholar 

  • Giuseppin MLF, van Eijk HMJ, Verduyn C, Bante I and van Dijken JP, 1988a. Production of catalase-free alcohol oxidase by Hansenula polymorpha. Applied Microbiology and Biotechnology 28: 14–19.

    CAS  Google Scholar 

  • Giuseppin MLF, van Eijk HMJ, Bos A, Verduyn C and van Dijken JP, 1988b. Utilisation of methanol by a catalase-negative mutant of Hansenula polymorpha. Applied Microbiology and Biotechnology 28: 286–292.

    CAS  Google Scholar 

  • Giuseppin MLF, van Eijk HMJ and Bes BCM, 1988c. Molecular regulation of alcohol oxidase formation in continuous cultures of Hansenula polymorpha. Biotechnology and Bioengineering 32: 577–583.

    Article  CAS  Google Scholar 

  • Herzenberg GR and Rogerson M, 1985. Use of alcohol oxidase to measure the methanol produced during the hydrolysis of D- and L-methyl-3-hydroxy butyric acid. Analytical Biochemistry 149: 354–357.

    Article  Google Scholar 

  • Holzer H, 1976. Catabolite inactivtion in yeasts. Trends in Biochemical Sciences 1: 178–181.

    CAS  Google Scholar 

  • Hopkins TR, 1980. A method for producing alcohol oxidase. European Patent Application No. 0019937.

    Google Scholar 

  • Hopkins TR, 1988. Stabilised alcohol oxidase compositions and method for producing same. United States Patent number 4.729956.

    Google Scholar 

  • Hopkins TR and Muller F, 1987. Biochemistry of alcohol oxidases in Proceedings of the 5th International Symposium on Microbial Growth on C1 Compounds. Eds van Verseveld HW, Duine JA. Martinus Nijhof Publishers, Dordrecht. 150–157.

    Google Scholar 

  • Kato N, Omori Y, Tani Y and Ogata K, 1976. Alcohol oxidases of Kloeckera sp. and Hansenula polymorpha. European Journal of Biochemistry 64: 341–350.

    Article  PubMed  CAS  Google Scholar 

  • Klavens JA and Bennett RD, 1986. Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins. Journal of Agricultural and Food Chemistry 34: 597–599.

    Article  Google Scholar 

  • Large PJ and Bamforth CW, 1988. Basic physiology and biochemistry of methylotrophic yeasts in Methylotrophy and Biotechnology. Longman Scientific and Technical 105–122.

    Google Scholar 

  • Majkic-Singh N and Berkes I, 1980. Spectrophotometric determination of ethanol by an enzymic method with 2.2’-azino-bis(3-ethylbenzothiazoline-6-sulfonate). Analytica Chimica Acta 115: 401–405.

    Article  CAS  Google Scholar 

  • Kato N, Tani Y and Yamada H, 1983. Microbial utilisation of methanol: production of useful metabolites. Advances in Biotechnological Processes 1: 171–202.

    CAS  Google Scholar 

  • Massey V and Palmer G, 1966. On the existence of spectrally distinct classes of flavoprotein semiquinones. A new method for the quantitative production of flavoprotein semiquinones. Biochemistry 10: 3181–3189.

    Article  Google Scholar 

  • Mincey T, Tayrien G, Mildvan AS & Abeles RH, 1980. Presence of a flavin semiquinone in methanol oxidase. Proceedings of the National Academy of Science 77: 7099–7101.

    Article  CAS  Google Scholar 

  • Osumi M, Nagano M, Yamada N, Hosoi J and Yanagida M, 1982. Three dimensional structure of the crystalloid in the microbody of Kloeckera sp. Composite crystal model. Journal of Bacteriology 151: 376–383.

    PubMed  CAS  Google Scholar 

  • Patel RN, Hou CT, Laskin AI and Derelonko P, 1981. Microbial oxidation of methanol: properties of crystallised alcohol oxidase from a yeast, Pichia sp. Archives of Biochemistry and Biophysics 210: 481–488.

    Article  PubMed  CAS  Google Scholar 

  • Phillips Petroleum Co, 1983. Biochemical conversions by yeast fermentation at high cell densities. US Patent No. 4414329.

    Google Scholar 

  • Phillips RC, 1984. Lifescan Inc. EEC Patent number 0133481.

    Google Scholar 

  • Roa M and Blobel G, 1983. Biosynthesis of peroxisomal enzymes in the methylotrophic yeast Hansenula polymorpha. Proceedings of the National Academy of Science 80: 6872–6876.

    Article  CAS  Google Scholar 

  • Roggenkamp R, Janowicz Z, Stanisknowski B and Hollenberg C, 1984. Biosynthesis and regulation of the peroxisomal methanol oxidase from the methylotrophic yeast Hansenula polymorpha. Microbial and General Genetics 194: 489–493.

    Article  CAS  Google Scholar 

  • Sahm H and Wagner F, 1973. Microbial assimilation of methanol. The ethanol- and methanoloxidising enzymes of the yeast Candida boidinii. European Journal of Biochemistry 36: 250–256.

    Article  PubMed  CAS  Google Scholar 

  • Sakai Y, Sawai T and Tani Y, 1987. Isolation and characterisation of a catabolite repression-insensitive mutant of a methanol yeast, Candida boidinii A5, producing alcohol oxidase in glucose containing medium. Applied and Environmental Microbiology 53: 1812–1818.

    PubMed  CAS  Google Scholar 

  • Schreiber W, Schindler J and Schmid R, 1975. Henkel and Cie GmbH. German Patent number 2 557 623.

    Google Scholar 

  • Sherry B and Abeles RH, 1985. Mechanism of action of methanol oxidase, reconstitution of methanol oxidase with 5-Deazoflavin, and inactivation of methanol oxidase by cyclopropanol. Biochemistry 24: 2594–2605.

    Article  PubMed  CAS  Google Scholar 

  • Unichika Co Ltd, 1986. Alcohol oxidase — a method of manufacturing same. Japanese patent number JP217522.

    Google Scholar 

  • van der Klei I, Veenhuis M, van der Ley I and Harder W, 1989. Heterologous expression of alcohol oxidase in Saccharomyces cerevisiae: properties of the enzyme and implications for microbody development. FEMS Microbiology Letters 57: 133–138.

    Article  Google Scholar 

  • Trinder P, 1969. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6: 24–27.

    CAS  Google Scholar 

  • van Dijken JP, Veenhuis M and Harder W, 1982. Peroxisomes of methanol-grown yeasts. Annals of the New York Academy of Science 386: 200–216.

    Article  Google Scholar 

  • Veenhuis M, van Dijken JP, Pilon SAF and Harder W, 1978. Development of crystalline peroxisomes in methanol-grown cells of the yeast Hansenula polymorpha and its relation to environmental conditions. Archives of Microbiology 117: 153–163.

    Article  PubMed  CAS  Google Scholar 

  • Veenhuis M, Keizer I and Harder W, 1979. Characterisation of peroxisomes in glucose-grown Hansenula polymorpha and their development after transfer of cells into methanol containing media. Archives of Microbiology 120: 167–175.

    Article  CAS  Google Scholar 

  • Veenhuis M, van Dijken JP and Harder W, 1983. The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts in Advances in Microbial Physiology. Vol. 24 Ed Rose AH, Morris JG and Tempest DW. Academic Press: 2–82.

    Google Scholar 

  • Veenhuis M, Sulter G, van der Klei and Harder W, 1989. Evidence for functional heterogeneity among microbodies in yeasts. Archives of Microbiology 151: 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Verduyn C, van Dijken JP and Scheffer WA, 1983. A simple, sensitive and accurate alcohol electrode. Biotechnology and Bioengineering 25: 1049–1056.

    Article  PubMed  CAS  Google Scholar 

  • Walter P, Gilmore R and Blobel G, 1984. Protein translocation across the endoplasmic reticulum. Cell 38: 5–8.

    Article  PubMed  CAS  Google Scholar 

  • Waters MG and Blobel G, 1986. Secretory protein translocation in yeast cell-free system can occur post-translationally and requires ATP hydrolysis. Journal of Cell Biology 102: 1543–1550.

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Sgin K-C, Kato N, Shimizu S and Tani Y, 1979. Purification and characterisation of alcohol oxidase from Candida 25A. Agricultural and Biological Chemistry 43: 877–878.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Woodward, J.R. (1990). Biochemistry and Applications of Alcohol Oxidase from Methylotrophic Yeasts. In: Codd, G.A., Dijkhuizen, L., Tabita, F.R. (eds) Autotrophic Microbiology and One-Carbon Metabolism. Advances in Autotrophic Microbiology and One-Carbon Metabolism, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1978-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1978-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7384-4

  • Online ISBN: 978-94-009-1978-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics