Skip to main content

The Biochemistry and Genetics of C1 Metabolism in the Pink Pigmented Facultative Methylotrophs

  • Chapter
Autotrophic Microbiology and One-Carbon Metabolism

Part of the book series: Advances in Autotrophic Microbiology and One-Carbon Metabolism ((AMOC,volume 1))

Abstract

Pink pigmented facultative methylotrophs (PPFMs) are capable of growth on reduced C1 compounds (methanol and usually also methylated amines and formate). Energy for growth is obtained from the oxidation of these substrates to CO2 and carbon is assimilated by the icl− variant of the serine pathway. Many isolates were originally considered to be pseudomonads, but now they have all been classified in the genus Methylobacterium (Green and Bousfield 1983; Green et al. 1988). Two of the PPFMs — Methylobacterium extorquens AMI (NCIB9133; formerly Pseudomonas AM1 or Methylobacterium AM1) and Methylobacterium organophilum — have been used to develop methods for the investigation of the genetics of methylotrophs. The aim of this review is to summarise this work and to demonstrate how it has enhanced our understanding not only of the genetics but also of the biochemistry of these organisms. There is some confusion concerning variants of Mb. organophilum; the strain deposited with The National Collection of Industrial Bacteria was designated Methylobacterium organophilum 11278 (XX ATCC27886 DSM760), but Allen and Hanson (1985) and Machlin et al. (1988) imply that they used two variants, namely XX and DSM760, in their work. These two strains appear to differ in some respects and in this review they will be distinguished when possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen LN and Hanson RS, 1985. Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol. J Bacteriol 161:955–962.

    PubMed  CAS  Google Scholar 

  • Al-Taho NM and Warner PJ, 1987. Restoration of phenotype in Escherichia coli auxotrophs by pULB113-mediated mobilisation from methylotrophic bacteria. FEMS Microbiology Letters 43: 235–239.

    Article  Google Scholar 

  • Anderson DJ and Lidstrom ME, 1988. The moxFG region encodes four polypeptides in the methanol-oxidising bacterium Methylobacterium sp strain AM1. Journal of Bacteriology 170: 2254–2262.

    PubMed  CAS  Google Scholar 

  • Anthony C, 1975. The microbial metabolism of C1 compounds. The cytochromes of Pseudomonas AM1. Biochemical Journal 146: 289–298.

    PubMed  CAS  Google Scholar 

  • Anthony C, 1982. Biochemistry of methylotrophs Academic Press

    Google Scholar 

  • Anthony C, 1986. Bacterial oxidation of methane and methanol. Advances in Microbial Physiology 27: 113–210.

    Article  PubMed  CAS  Google Scholar 

  • Anthony C, 1988. Quinoproteins and energy transduction. In: Anthony C. (ed). Bacterial energy transduction. Academic Press London. 293–316.

    Google Scholar 

  • Bellion E and Spain JC, 1976. The distribution of the isocitrate lyase serine pathway amongst onecarbon utilising organisms. Canadian Journal of Microbiology 22: 404–408.

    Article  PubMed  CAS  Google Scholar 

  • Biville F, Mazodier P, Gasser F, van Kleef MAG and Duine JA, 1988a. Physiological properties of a pyrroloquinoline quinone mutant of Methylobacterium organophilum. FEMS Microbiology Letters 52: 53–58.

    Article  CAS  Google Scholar 

  • Biville F, Mazodier P, Turlin E and Gasser F, 1988b. Mutants of Methylobacterium organophilum unable to synthesise PQQ. Proceedings of the First International Symposium on PQQ and Quinoproteins, Delft.

    Google Scholar 

  • Chassy BM, Mercenier A and Flickinger J, 1988. Transformation of bacteria by electroporation. Trends in Biotechnology 6: 303–309.

    Article  CAS  Google Scholar 

  • Day DJ, Nunn DN and Anthony C, 1990. Characterisation of a novel soluble C-type cytochrome in a moxD mutant of Methylobacterium extorquens AM1. Journal of General Microbiology 136: 181–188.

    PubMed  CAS  Google Scholar 

  • Dijkstra M, Frank J and Duine JA, 1988. Methanol oxidation under physiological conditions using methanol dehydrogenase and a factor isolated from Hyphomicrobium X. FEBS Letters 227: 198–202.

    Article  CAS  Google Scholar 

  • Dunstan PM, Anthony C and Drabble WT, 1972a. Microbial metabolism of C1 and C2 compounds: the involvement of glycollate in the metabolism of ethanol and of acetate by Pseudomonas AM1. Biochemical Journal 128: 99–106.

    PubMed  CAS  Google Scholar 

  • Dunstan PM, Anthony C and Drabble WT, 1972b. Microbial metabolism of C1 and C2 compounds: the role of glyoxylate, glycollate and acetate in the growth of Pseudomonas AM1 on ethanol and on C1 compounds. Biochemical Journal 128: 107–115.

    PubMed  CAS  Google Scholar 

  • Fulton GL, Nunn DN and Lidstrom ME, 1984. Molecular cloning of a malyl coenzymeA lyase gene from Pseudomonas sp strain AM1, a facultative methylotroph. Journal of Bacteriology 160: 718–723.

    PubMed  CAS  Google Scholar 

  • Gautier F and Bonewald R, 1980. The use of plasmid R1162 and derivatives for gene cloning in the methanol-utilizing Pseudomonas AM1. Molecular and General Genetics 178: 375–380.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin PM, Piercy R and Stone S (1988). Increased sensitivity of rifamycin-resistant mutants of Methylobacterium AM1 to a variety of antimicrobial agents. Letters in Applied Microbiology 7: 99–101.

    Article  CAS  Google Scholar 

  • Green PN and Bousfield IJ, 1982. A taxonomic study of some Gram negative facultatively methylotrophic bacteria. Journal of General Microbiology 128: 623–638.

    Google Scholar 

  • Green PN and Bousfield IJ, 1983. Emendation of Methylobacterium Patt, Cole and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. International Journal of Systematic Bacteriology 33: 875–877.

    Article  Google Scholar 

  • Green PN, Bousfield IJ and Hood D, 1988. Three new Methylobacterium species; M rhodesianum sp nov., M zatmanii, sp. nov., and M fujisawaense sp. nov. International Journal of Systematic Bacteriology 38: 124–127.

    Article  CAS  Google Scholar 

  • Haber CL, Allen LN, Zhao S and Hanson RS, 1983. Methylotrophic bacteria: biochemical diversity and genetics. Science 221: 1147–1153.

    Article  PubMed  CAS  Google Scholar 

  • Harder W and Quayle JR, 1971a. The biosynthesis of serine and glycine in Pseudomonas AM1 with special reference to growth on carbon sources other than C1 compounds. Biochemical Journal 121: 753–762.

    PubMed  CAS  Google Scholar 

  • Harder W and Quayle JR, 1971b. Aspects of glycine and serine biosynthesis during growth of Pseudomonas AM1 on C1 compounds. Biochemical Journal 121: 763–769.

    PubMed  CAS  Google Scholar 

  • Harms N, Vries GE de, Maurer K, Hoogendij J and Stouthamer AH, 1988. Isolation and nucleotide sequence of the methanol dehydrogenase structural gene from Paracoccus denitrificans. Journal of Bacteriology 169: 3969–3975.

    Google Scholar 

  • Heptinstall J and Quayle JR, 1970. Pathways leading to and from serine during growth of Pseudomonas AM1 on C1 compounds or succinate. Biochemical Journal 117: 563–572.

    PubMed  CAS  Google Scholar 

  • Holloway BW 1986. Chromosome mobilization and genomic organisation in Pseudomonas. In: The Bacteria, vol X. J R Sokatch (ed). Academic Press pp 217–249.

    Google Scholar 

  • Hood DW, Dow CS and Green PN, 1987. DNA:DNA hybridisation studies on the pink pigmented facultative methylotrophs. Journal of General Microbiology 133: 709–720.

    PubMed  CAS  Google Scholar 

  • Janvier M, Frehel C, Grimont F and Gasser F, 1985. Methylophaga marina gen. nov., sp. nov. and Methylophaga thalassica sp. nov., marine methylotrophs. International Journal of Systematic Bacteriology 35: 131–139.

    Article  CAS  Google Scholar 

  • Jayaseelan K and Guest JR, 1979. Transfer of antibiotic resistance to facultative methylotrophs with plasmid R68.45. FEMS Microbiology Letters 6: 87–89.

    Article  Google Scholar 

  • Lidstrom ME, Nunn DN, Anderson DJ, Stephens RL and Haygood MG, 1987. Molecular biology of methanol oxidation. In: Van Verseveld HW and Duine JA (eds). Microbial Growth on C1 compounds. Martinus Nijhoff. pp 246–254.

    Google Scholar 

  • Machlin SM and Hanson RS, 1988. Nucleotide sequence and transcriptional start site of the Methylobacterium organophilum XX methanol dehydrogenase structural gene. Journal of Bacteriology 170: 4739–4747.

    PubMed  CAS  Google Scholar 

  • Machlin SM, Tam PE, Bastien CA and Hanson RS, 1988. Genetic and physical analysis of Methylobacterium organophilum XX genes encoding methanol oxidation. Journal of Bacteriology 170: 141–148.

    PubMed  CAS  Google Scholar 

  • Mazodier P, Biville F, Turlin E and Gasser F, 1988. Localization of a pyrroloquinoline quinine biosynthesis gene near the methanol dehydrogenase structural gene in Methylobacterium organophilum DSM 760. Journal of General Microbiology 134: 2513–2524.

    PubMed  CAS  Google Scholar 

  • McNerney T and O’Connor ML, 1980. Regulation of enzymes associated with C1 metabolism in three facultative methylotrophs. Applied and Environmental Microbiology 40: 370–375.

    PubMed  CAS  Google Scholar 

  • Nunn DN and Anthony C, 1988a. The nucleotide sequence and deduced amino acid sequence of the genes for cytochrome cL and a hypothetical second subunit of the methanol dehydrogenase of Methylobacterium AM1. Nucleic Acids Research 15: 7722.

    Article  Google Scholar 

  • Nunn DN and Anthony C, 1988b. The nucleotide sequence and deduced amino acid sequence of the cytochrome cL gene of Methylobacterium extorquens AM1, a novel class of c-type cytochrome. Biochemical Journal 256: 673–676.

    PubMed  CAS  Google Scholar 

  • Nunn DN, Day D and Anthony C, 1989. The second subunit of methanol dehydrogenase of Methylobacterium exiorquens AM1. Biochemical Journal 260: 857–862.

    PubMed  CAS  Google Scholar 

  • Nunn DN and Lidstrom ME, 1986a. Isolation and complementation analysis of 10 methanol oxidation mutant classes and identification of the methanol dehydrogenase structural gene of Methylobacterium sp strain AM1. Journal of Bacteriology 166: 581–590.

    PubMed  CAS  Google Scholar 

  • Nunn DN and Lidstrom ME, 1986b. Phenotypic characterization of 10 methanol oxidation mutant classes in Methylobacterium sp strain AM1. Journal of Bacteriology 166: 591–597.

    PubMed  CAS  Google Scholar 

  • O’Connor ML, 1981. Regulation and genetics in facultative methylotrophic bacteria. In: Dalton H (ed). Microbial growth on C1 compounds. Heyden, London. pp294–300.

    Google Scholar 

  • O’Connor ML and Hanson RS, 1977. Enzyme regulation in Methylobacterium organophilum. Journal of General Microbiology 101: 327–332.

    Google Scholar 

  • O’Connor M, Wopat A and Hanson RS, 1977. Genetic transformation in Methylobacterium organophilum. Journal of General Microbiology 98: 265–272.

    PubMed  Google Scholar 

  • O’Connor ML and Hanson RS, 1978. Linkage relationships between mutants of Methylobacterium organophilum impaired in their ability to grow on one-carbon compounds. Journal of General Microbiology 104: 105–111.

    Google Scholar 

  • Page MD and Anthony C, 1986. Regulation of formaldehyde oxidation by the methanol dehydrogenase modifier proteins of Methylophilus methylotrophus and Pseudomonas AM1. Journal of General Microbiology 132: 1553–1563.

    CAS  Google Scholar 

  • Roitsch T and Stolp H, 1986. Synthesis of dissimilatory enzymes of serine type methylotrophs under different growth conditions. Archives of Microbiology 144: 245–247.

    Article  CAS  Google Scholar 

  • Salem AR, Hacking AJ and Quayle JR, 1974. Lack of malyl CoA lyase in a mutant of Pseudomonas AM1. Journal of General Microbiology 81: 525–527.

    PubMed  CAS  Google Scholar 

  • Shimizu S, Ueda S and Sato K, 1984. Physiological role of vitamin B12 in a methanol utilizing bacterium, Protaminobacter ruber. In: Crawford RL and Hanson RS (eds). Microbial growth on C1 compounds. American Society for Microbiology, Washington DC ppl 13–117.

    Google Scholar 

  • Stone S and Goodwin PM, 1989. Characterisation and complementation of mutants of Methyobacterium AM1 which are defective in C1 assimilation. Journal of General Microbiology 135: 227–235.

    CAS  Google Scholar 

  • Tatra PK and Goodwin PM, 1983. R-plasmid-mediated chromosome mobilization in the facultative methylotroph Pseudomonas AM1. Journal of General Microbiology 129: 2629–2632.

    CAS  Google Scholar 

  • Tatra PK and Goodwin PM, 1985. Mapping of some genes involved in C1 metabolism in the facultative methylotroph Methylobacterium sp strain AM1 (Pseudomonas AM1). Archives of Microbiology 143: 169–177.

    Article  CAS  Google Scholar 

  • Vries GE de, 1986. Molecular biology of methanol oxidation. FEMS Microbiology Reviews 39: 235–258.

    Google Scholar 

  • Vries GE de, Harms N, Maurer K, Papendrecht A and Stouthamer AH, 1988. Physiological regulation of Paracoccus denitrificans methanol dehydrogenase synthesis and activity. Journal of Bacteriology 170: 3731–3737.

    PubMed  Google Scholar 

  • Warner PJ, Higgins IJ and Drozd JW, 1977. Examination of obligate and facultative methylotrophs for plasmid DNA. FEMS Microbiology Letters 1: 339–342.

    Article  CAS  Google Scholar 

  • Weaver CA and Lidstrom ME. 1985. Methanol dissimilation in Xanthobacter H4-14: activities, induction and comparison to Pseudomonas AM1 and Paracoccus denitrificans. Journal of General Microbiology 131: 2183–2197.

    PubMed  CAS  Google Scholar 

  • Whitta S, Sinclair MI and Holloway BW, 1985. Transposon mutagenesis in Methylobacterium AM1 (Pseudomonas AM1). Journal of General Microbiology 131: 1547–1549.

    CAS  Google Scholar 

References

  • Bastien C, Machlin S, Zhang Y, Donaldson K and Hanson RS, 1989. Organization of genes required for the oxidation of methanol to formaldehyde in three type II methylotrophs. Applied and Environmental Microbiology 55: 3124–3130.

    PubMed  CAS  Google Scholar 

  • Lidstrom ME, 1989. Genetics of carbon metabolism in methylotrophic bacteria. Presented at the 6th International Symposium on Microbial Growth on C1 compounds, Gottingen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Goodwin, P.M. (1990). The Biochemistry and Genetics of C1 Metabolism in the Pink Pigmented Facultative Methylotrophs. In: Codd, G.A., Dijkhuizen, L., Tabita, F.R. (eds) Autotrophic Microbiology and One-Carbon Metabolism. Advances in Autotrophic Microbiology and One-Carbon Metabolism, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1978-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1978-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7384-4

  • Online ISBN: 978-94-009-1978-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics