Skip to main content

Formate Dehydrogenase: Microbiology, Biochemistry and Genetics

  • Chapter
Autotrophic Microbiology and One-Carbon Metabolism

Part of the book series: Advances in Autotrophic Microbiology and One-Carbon Metabolism ((AMOC,volume 1))

Abstract

Formate is produced or consumed in various reactions essential for metabolic pathways of diverse organisms. It is commonly formed as a byproduct of anabolism where it is further oxidized by formate dehydrogenase to carbon dioxide or activated to formyltetrahydrofolate as a one-carbon substrate for biosynthetic reactions (Thauer et al. 1977a). A diversity of microorganisms produce or consume formate in energy yielding pathways. This chapter focuses on the reversible two-electron oxidation of formate (HCOO = CO2 + H+ + 2e) catalyzed by formate dehydrogenases from eubacteria, archaeobacteria and eucaryotic yeasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison MJ, Dawson KA, Mayberry WR, Foss JG, 1985. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 141:1–7.

    PubMed  CAS  Google Scholar 

  • Andreesen JR, Ghazzawi EE, Gottschalk G, 1974. The effect of ferrous ions, tungstate and selenite on the level of formate dehydrogenase in Clostridium formicoaceticum and formate synthesis form CO2 during pyruvate fermentation. Arch Microbiol 96:103–118.

    CAS  Google Scholar 

  • Andreesen JR, Ljungdahl LG, 1973. Formate dehydrogenase of Clostridium thermoaceticum: incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme. J Bacteriol 116:867–873.

    PubMed  CAS  Google Scholar 

  • Andreesen JR, Ljungdahl LG, 1974. Nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum: purification and properties. J Bacteriol 120:6–14.

    PubMed  CAS  Google Scholar 

  • Anthony C, 1982. The bacterial oxidation of methane, methanol, formaldehyde and formate. In: The Biochemistry of Methylotrophs, London, Academic Press, pp 152–194.

    Google Scholar 

  • Asano Y, Sekigawa T, Inukai H, Nakazawa A, 1988. Purification and properties of formate dehydrogenase from Moraxella sp. strain C-1. J Bacteriol 170:3189–3193.

    PubMed  CAS  Google Scholar 

  • Avilova TV, Egorova A, Ioanesyan LS, Egorov AM, 1985. Biosynthesis, isolation and properties of NAD-dependent formate dehydrogenase from the yeast Candida methylica. Eur J Biochem 152:657–662.

    PubMed  CAS  Google Scholar 

  • Axley MJ, Stadtman TC, 1988. Anaerobic induction of Escherichia coli formate dehydrogenase (hydrogenase-linked) is enhanced by gyrase inactivation. Proc. Natl. Acad. Sci. USA 85:1023–1027.

    PubMed  CAS  Google Scholar 

  • Badziong W, Thauer RK, 1978. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch Microbiol 116:41–49.

    PubMed  CAS  Google Scholar 

  • Barber MJ, May HD, Ferry JG, 1986. Inactivation of formate dehydrogenase from Methanobacterium formicicum by cyanide. Biochemistry 25:8150–8155.

    CAS  Google Scholar 

  • Barber M J, Siegel LM, Schauer NL, May HD, Ferry JG, 1983. Formate dehydrogenase from Methanobacterium formicicum. Electron paramagnetic resonance spectroscopy of the molybdenum and iron-sulfur centers. J Biol Chem 258:10839–10845.

    PubMed  CAS  Google Scholar 

  • Baron SF, Brown DP, Ferry JG, 1987. Locations of the hydrogenases of Methanobacterium formicicum after subcellular fractionation of cell extract. J Bacteriol 169:3823–3825.

    PubMed  CAS  Google Scholar 

  • Baron SF, Ferry JG, 1989a. Reconstitution and properties of a coenzyme F420-mediated formate hydrogenlyase system in Methanobacterium formicicum. J Bacteriol 171: 3854–3859.

    CAS  Google Scholar 

  • Baron SF, Ferry JG, 1989b. Purification and properties of the membrane-associated coenzyme F420-reducing hydrogenase from Methanobacterium formicicum. J Bacteriol 171: 3846–3853.

    CAS  Google Scholar 

  • Baron SF, Williams DS, May HD, Patel PS, Aldrich HC, Ferry JG, 1989. Immunogold localization of coenzyme F420-reducing formate dehydrogenase and coenzyme F420-reducing hydrogenase in Methanobacterium formicicum. Arch Microbiol 151:307–313.

    CAS  Google Scholar 

  • Bilous PT, Cole ST, Anderson WF, Weiner JH, 1988. Nucleotide sequence of the dmsABC Operon encoding the anaerobic dimethylsulphoxide reductase of Escherichia coli HB101. Molecular Microbiology 2:785–796.

    PubMed  CAS  Google Scholar 

  • Birkmann A, Bock A, 1989. Characterization of a cis regulatory DNA element necessary for formate induction of the formate dehydrogenase gene (Fdhf) of Escherichia coli. Molecular Microbiology 3:187–195.

    PubMed  CAS  Google Scholar 

  • Birkmann A, Sawers RG, Bock A, 1987a. Involvement of the ntrA gene product in the anaerobic metabolism of Escherichia coli. Mol Gen Genet 210:535–542.

    CAS  Google Scholar 

  • Birkmann A, Zinoni F, Sawers G, Bock A, 1987b. Factors affecting transcriptional regulation of the formate-hydrogen-lyase pathway of Escherichia coli. Arch Microbiol 148:44–51.

    CAS  Google Scholar 

  • Blanchard JS, Cleland WW, 1980. Kinetic and chemical mechanisms of yeast formate dehydrogenase. Biochemistry 19:3543–3550.

    PubMed  CAS  Google Scholar 

  • Blaut M, Gottschalk G, 1985. Evidence for a chemiosmotic mechanism of ATP synthesis in methanogenic bacteria. Trends Biochem Science 10:486–489.

    CAS  Google Scholar 

  • Burke KA, Calder K, Lascelles J, 1980. Effects of molybdenum and tungsten on induction of nitrate reductase and formate dehydrogenase in wild type mutant Paracoccus denitrificans. Arch Microbiol 126:155–159.

    PubMed  CAS  Google Scholar 

  • Cox JC, Edwards ES, DeMoss JA, 1981. Resolution of distinct selenium-containing formate dehydrogenases from Escherichia coli. J Bacteriol 145:1317–1324.

    PubMed  CAS  Google Scholar 

  • Cramer SP, Liu C-L, Mortenson LE, Spence JT, Liu S-M, Yamamoto I, Ljungdahl LG, 1985. Formate dehydrogenase molybdenum and tungsten sites-observation by EXAFS of structural differences. Journal of Inorganic Biochemistry 23:119–124.

    PubMed  CAS  Google Scholar 

  • Deaton JC, Solomon EI, Durfor CN, Wetherbee PJ, Burgess BK, Jacobs DB, 1984. Activation of nit-1 nitrate reductase by W-formate dehydrogenase. Biochem Biophys Res Comm 121:1042–1047.

    PubMed  CAS  Google Scholar 

  • Deaton JC, Solomon EI, Watt GD, Wetherbee PJ, Durfor CN, 1987. Electron paramagnetic resonance studies of the tungsten-containing formate dehydrogenase from Clostridium thermoaceticum. Biochem. Biophys Res Commun 149:424–430.

    CAS  Google Scholar 

  • Deyhle RR, Barton LL, 1977. Nicotinamide adenine dinucleotide-independent formate dehydrogenase in Mycobacterium phlei. Can J Microbiol 23:125–130.

    PubMed  CAS  Google Scholar 

  • Dijkhuizen L, Knight M, Harder W, 1978. Metabolic regulation in Pseudomonas oxalaticus OX1 autotrophic and heterotrophic growth on mixed substrates. Arch Microbiol 116:77–83.

    PubMed  CAS  Google Scholar 

  • Dijkhuizen L, Timmerman JWC, Harder W, 1979. A pyridine nucleotide-independent membrane-bound formate dehydrogenase in Pseudomonas oxalaticus OX1. FEMS Microbiol. Lett. 6:53–56.

    CAS  Google Scholar 

  • Dijkhuizen L, van der Werf B, Harder W, 1980. Metabolic regulation in Pseudomonas oxalaticus OX1. Diauxic growth on mixtures of oxalate and formate or acetate. Arch Microbiol 124:261–268.

    CAS  Google Scholar 

  • Egli T, Haltmeier T, Fiechter A, 1982. Regulation of the synthesis of methanol oxidizing enzymes in Kloeckera sp. 2201 and Hansenula polymorpha, a comparison. Arch Microbiol 131:174–175.

    CAS  Google Scholar 

  • Egli T, 1982. Regulation of protein synthesis in methylotrophic yeasts: repression of methanol dissimilating enzymes by nitrogen limitation. Arch Microbiol 131:95–101.

    CAS  Google Scholar 

  • Egorov AM, Avilova TV, Dikov MM, Popov VO, Rodionov YV, Berezin IV, 1979. NAD-dependent formate dehydrogenase from methylotrophic bacterium, strain 1. Eur J Biochem 99:569–576.

    PubMed  CAS  Google Scholar 

  • Egorov AM, Tishkov VI, Avilova TV, Popov VO, 1982a. S-formyl glutathione as a substrate of bacterial formate dehydrogenase. Biochem Biophys Res Commun 104:1–5.

    CAS  Google Scholar 

  • Egorov AM, Tishkov VI, Dainichenko VV, Popov VO, 1982b. Chemical modification of lysine residues in bacterial formate dehydrogenase. Biochim Biophys Acta 709:8–12.

    CAS  Google Scholar 

  • Egorov AM, Tishkov VI, Popov VO, Berezin IV, 1981. Study of the role of arginine residues in bacterial formate dehydrogenase. Biochim Biophys Acta 659:141–149.

    PubMed  CAS  Google Scholar 

  • Eidsness MK, Scott RA, Prickril BC, Dervartanian DV, Legall J, Moura I, Moura JJG, Peck HD, 1989. Evidence for selenocysteine coordination to the active site nickel in the 〈NiFeSe〉hydrogenases from Desulfovibrio baculatus. Proc Natl Acad Sci USA 86:147–151.

    PubMed  CAS  Google Scholar 

  • Enoch HG, Lester RL, 1975. The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. J Biol Chem 250:6693–6705.

    PubMed  CAS  Google Scholar 

  • Enoch HG, Lester RL, 1982. Formate dehydrogenase from Escherichia coli. Methods in Enzymology pp 537–543.

    Google Scholar 

  • Ferry JG, Wolfe RS, 1976. Anaerobic degradation of benzoate to methane by a microbial consortium. Arch Microbiol 107:33–40.

    PubMed  CAS  Google Scholar 

  • Ferry JG, Wolfe RS, 1977. Nutritional and biochemical characterization of Methanospirillum hungatii. Appl Environ Microbiol 34:371–376.

    PubMed  CAS  Google Scholar 

  • Friedrich CG, Bowien B, Friedrich B, 1979. Formate and oxalate metabolism in Alcaligenes eutrophus. J Gen Microbiol 115:185–192.

    CAS  Google Scholar 

  • Giordano G, Haddock BA, Boxer DH, 1980. Molybdenum-limited growth achieved either phenotypically or genotypically and its effect on the synthesis of formate dehydrogenase and nitrate reductase by Escherichia coli K12. FEMS Microbiol Lett 8:229–235.

    CAS  Google Scholar 

  • Giordano G, Medani C-L, Mandrand-Berthelot MA, Boxer DH, 1983. Formate dehydrogenases from Escherichia coli. FEMS Microbiol Lett 17:171–177.

    CAS  Google Scholar 

  • Gottschalk G, 1985. Bacterial Metabolism. Springer-Verlag, New York, pp 269–282.

    Google Scholar 

  • Graham A, Boxer DH, 1981. The organization of formate dehydrogenase in the cytoplasmic membrane of Escherichia coli. Biochem J 195:627–637.

    PubMed  CAS  Google Scholar 

  • Gray CT, Gest H, 1965. Biological formation of molecular hydrogen: A ‘hydrogen valve’ facilitates regulation of anaerobic energy metabolism in many microorganisms. Science 143:186–192.

    Google Scholar 

  • Haddock BA, Mandrand-Berthelot M-A, 1982. Escherichia coli formate-to-nitrate respiratory chain: genetic analysis. Biochem Soc Trans 10:478–480.

    PubMed  CAS  Google Scholar 

  • Haddock JD, Ferry JG, 1989. Purification and properties of phloroglucinol reductase from Eubacterium oxidoreducens. J Biol Chem 264:4423–4427.

    PubMed  CAS  Google Scholar 

  • Hartzell PL, Zvilius G, Escalante-Semerena JC, Donnelly MI, 1985. Coenzyme F420 dependence of the methylenetetrahydro-methanopterin dehydrogenase of Methanobacterium thermoautotrophicum. Biochem Biophys Res Commun 133:884–890.

    PubMed  CAS  Google Scholar 

  • Hou CT, Patel RN, Laskin AI, Barnabe N, 1982. NAD-linked formate dehydrogenase from methanol-grown Pichia pastoris NRRL-Y-7556. Arch Biochem Biophys 216:296–305.

    PubMed  CAS  Google Scholar 

  • Ingeldew WJ, Poole RK, 1984. The respiratory chains of Escherichia coli. Microbiol Rev 48:222–271.

    Google Scholar 

  • Iuchi S, Lin ECC, 1987. The narL gene product activates the nitrate reductase operon and represses the fumarate reductase and trimethylamine N-oxide reductase operons in Escherichia coli. Proc Natl Acad Sci USA 84:3901–3905.

    PubMed  CAS  Google Scholar 

  • Jones JB, Dilworth DL, Stadtman TC, 1979. Occurrence of selenocysteine in the selenium-dependent formate dehydrogenase of Methanococcus vannielii. Arch Biochem Biophys 195:255–260.

    PubMed  CAS  Google Scholar 

  • Jones JB, Stadtman TC, 1977. Methanococcus vannielii: culture and effects of selenium and tungsten on growth. J Bacteriol 130:1404–1406.

    PubMed  CAS  Google Scholar 

  • Jones JB, Stadtman TC, 1980. Reconstitution of a formate-NADP+ oxidoreductase from formate dehydrogenase and a 5-deazaflavin-linked NADP+ reductase isolated from Methanococcus vannielii. J Biol Chem 255:1049–1053.

    PubMed  CAS  Google Scholar 

  • Jones JB, Stadtman TC, 1981. Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii. J Biol Chem 256:656–663.

    PubMed  CAS  Google Scholar 

  • Kalman LV, Gunsalus RP, 1988. The frdR gene of Escherichia coli globally regulates several Operons involved in anaerobic growth in response to nitrate. J Bacteriol 170:623–629.

    PubMed  CAS  Google Scholar 

  • Kato N, Sahm H, Wagner F, 1979. Steady-state kinetics of formaldehyde dehydrogenase and formate dehydrogenase from a methanol-utilizing yeast, Candida boidinii. Biochim Biophys Acta 566:12–20.

    PubMed  CAS  Google Scholar 

  • Kearny JJ, Sagers RD, 1972. Formate dehydrogenase from Clostridium acidiurici. J Bacteriol 109:152–161.

    PubMed  CAS  Google Scholar 

  • Kelly DP, Wood AP, Gottschal JC, Kuenen JG, 1979. Autotrophic metabolism of formate by Thiobacillus strain A2. J Gen Microbiol 114:1–13.

    CAS  Google Scholar 

  • Ketchum PA, Cambier HY, Frazier III WA, Madansky CI, Nason A, 1970. In vitro assembly of Neurospora assimilatory nitrate reductase from protein subunits of a Neurospora mutant and the xanthine oxidizing or aldehyde oxidase systems of higher animals. Proc Nat Acad Sci USA 66:1016–1023.

    PubMed  CAS  Google Scholar 

  • Klibanov AM, Alberti BN, Zale SE, 1982. Enzymatic synthesis of formic acid from H2 and CO2 and production of hydrogen from formic acid. Biotechnol Bioeng 24:25–36.

    PubMed  CAS  Google Scholar 

  • Kramer SP, Johnson JL, Ribeiro AA, Millington DS, Rajagopalan KV, 1987. The structure of the molybdenum cofactor. Characterization of di- (carboxamidomethyl) molybdopterin from sulfite oxidase and xanthine oxidase. J Biol Chem 262:16357–16363.

    PubMed  CAS  Google Scholar 

  • Kroger A, Dorrer E, Winkler E, 1980. The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes. Biochim Biophys Acta 589:118–136.

    PubMed  CAS  Google Scholar 

  • Kroger A, Winkler E, Innerhofer A, Hackenberg H, Schagger H, 1979. The formate dehydrogenase involved in electron transport from formate to fumarate in Vibrio succinogenes. Eur J Biochem 94:465–475.

    PubMed  CAS  Google Scholar 

  • Kruger B, Meyer O, 1987. Structural elements of bactopterin from Pseudomonas carboxydoflava carbon monoxide dehydrogenase. Biochim Biophys Acta 908:357–364.

    Google Scholar 

  • Krumholz LR, Bryant MP, 1986. Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxymonobenzenoids or Methanobrevibacter as electron acceptor systems. Arch Microbiol 143:313–318.

    CAS  Google Scholar 

  • Krumholz LR, Crawford RL, Hemling ME, Bryant MP, 1987. Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate. J Bacteriol 169:1886–1890.

    PubMed  CAS  Google Scholar 

  • Lambden PR, Guest JR, 1976. Mutants of Escherichia coli K12 unable to use fumarate as an anaerobic electron acceptor. J Gen Microbiol 97:145–160.

    PubMed  CAS  Google Scholar 

  • Leinfelder W, Forchhammer K, Zinoni F, Sawers G, Mandrand-Berthelot M-A, Bock A, 1988a. Escherichia coli genes whose products are involved in selenium metabolism. J Bacteriol 170:540–546.

    PubMed  CAS  Google Scholar 

  • Leinfelder W, Zehelein E, Mandrad-Berthelot M-A, Bock A, 1988b. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature 331:723–724.

    CAS  Google Scholar 

  • Leonhardt U, Andreesen JR, 1977. Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum. Arch Microbiol 115:277–284.

    PubMed  CAS  Google Scholar 

  • Li L, Ljungdahl L, Wood HG, 1966. Properties of nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum. J Bacteriol 92:405–412.

    PubMed  CAS  Google Scholar 

  • Lin ECC, Kuritzkes DR, 1987. Pathways for anaerobic electron transport. In: Neidhart F, Ingraham JL, Brooks, Low K, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology. American Society for Microbiology, Washington, pp 201–221.

    Google Scholar 

  • Liu C, Mortenson LE, 1984. Formate dehydrogenase of Clostridium pasteurianum. J Bacteriol 159:375–380.

    PubMed  CAS  Google Scholar 

  • Ljungdahl LG, 1980. Formate dehydrogenase from Clostridium thermoaceticum. In: Newton WE, Otsuka S (eds) Molybdenum Chemistry of Biological Significance, Plenum Publishing Corporation, New York, pp 129–137.

    Google Scholar 

  • Ljungdahl LG, 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann Rev Microbiol 40:415–50.

    CAS  Google Scholar 

  • Lovley DR, Phillips EJP, Lonergan DJ, 1989. Hydrogen and formate oxidation coupled to dissimulatory reduction of iron or manganese by Alteromonas putrefaciens. Appl Environ Microbiol 55:700–706.

    PubMed  CAS  Google Scholar 

  • Macy JM, Schroder I, Thauer RK, Kroger A, 1986. Growth of Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch Microbiol 144:147–150.

    CAS  Google Scholar 

  • Magee EL, Ensley BD, Barton LL, 1978. An assessment of growth yields and energy coupling in Desulfovibrio. Arch Microbiol 117:21–26.

    CAS  Google Scholar 

  • May HD, Patel PS, Ferry JG, 1988. Effect of molybdenum and tungsten on synthesis and composition of formate dehydrogenase in Methanobacterium formicicum. J Bacteriol 170:3384–3389.

    PubMed  CAS  Google Scholar 

  • May HD, Schauer NL, Ferry JG, 1986. Molybdopterin cofactor from Methanobacterium formicicum formate dehydrogenase. J Bacteriol 166:500–504.

    PubMed  CAS  Google Scholar 

  • McInerney M J, Bryant MP, 1981. Basic principles of bioconversions in anaerobic digestion and methanogenesis. In: Sofer SS, Zaborsky OR (eds) Biomass Conversion Processes for Energy and Fuels Plenum Publishing Corporation, pp 277–296.

    Google Scholar 

  • Miller JB, Scott DJ, Amy NK, 1987. Molybdenum-sensitive transcriptional regulation of the chlD locus of Escherichia coli. J Bacteriol 169:1853–1860.

    PubMed  CAS  Google Scholar 

  • Miller TL, Wolin M J, 1973. Formation of hydrogen and formate by Ruminococcus albus. J Bacteriol 116:836–846.

    PubMed  CAS  Google Scholar 

  • Miller TL, Wolin MJ, 1979. Fermentations by saccharolytic intestinal bacteria. Am J Clin Nutr 32:164–172.

    PubMed  CAS  Google Scholar 

  • Mountfort DO, Asher RA, 1986. Isolation from a methanogenic ferulate degrading consortium of an anaerobe that converts methoxyl groups of aromatic acids to volatile fatty acids. Arch Microbiol 144:55–61.

    CAS  Google Scholar 

  • Muller U, Willnow P, Ruschig U, Hopner T, 1978. Formate dehydrogenase for Pseudomonas oxalaticus. Eur J Biochem 83:485–498.

    PubMed  CAS  Google Scholar 

  • Niekus HGD, Veenhuis M, Stouthamer AH, 1980. Formate oxidation in Campylobacter sputorum subspecies Bubulus. FEMS Microbiol Lett 9:1–6.

    CAS  Google Scholar 

  • Odom JM, Peck HD, 1981. Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacteria. J Bacteriol 147:161–169.

    PubMed  CAS  Google Scholar 

  • Patel PS, Ferry JG, 1988. Characterization of the upstream region of the formate dehydrogenase Operon of Methanobacterium formicicum. J Bacteriol 170:3390–3395.

    PubMed  CAS  Google Scholar 

  • Pecher A, Zinoni F, Bock A, 1985. The seleno-polypeptide of formic dehydrogenase (formate hydrogen-lyase linked) from Escherichia coli: genetic analysis. Arch Microbiol 141, 4:359–363.

    PubMed  CAS  Google Scholar 

  • Pezacka E, Wood HG, 1988. Acetyl-CoA pathway of autotrophic growth. Identification of the methyl-binding site of the CO dehydrogenase. J Biol Chem 263:16000–16006.

    PubMed  CAS  Google Scholar 

  • Postgate, JR, 1979. The sulphate-reducing bacteria. Cambridge University Press, Cambridge.

    Google Scholar 

  • Prince RC, Liu C-L, Morgan TV, Mortenson LE, 1985. Formate dehydrogenase from Clostridium pasteurianum: electron paramagnetic resonance spectroscopy of the redox active centers. FEBS Lett 189:263–266.

    CAS  Google Scholar 

  • Reddy CA, Bryant MP, Wolin MJ, 1972. Ferredoxin- and nicotinamide adenine dinucleotide-dependent H2 production from ethanol and formate in extracts of S organism isolated from Methanobacillus omelianskii. J Bacteriol 110:126–132.

    PubMed  CAS  Google Scholar 

  • Rouviere PE, Wolfe RS, 1988. Novel biochemistry of methanogenesis. J Biol Chem 263:7913–7916.

    PubMed  CAS  Google Scholar 

  • Ruschig U, Muller U, Willnow P, Hopner T, 1976. CO2 reduction to formate by NADH catalyzed by formate dehydrogenase from Pseudomonas oxalaticus. Eur J Biochem 70:325–330.

    PubMed  CAS  Google Scholar 

  • Sankar P, Lee JH, Shanmugam KT, 1988. Gene-product relationships of fhlA and fdv genes of Escherichia coli. J Bacteriol 170:5440–5445.

    PubMed  CAS  Google Scholar 

  • Sawers G, Bock A, 1988. Anaerobic regulation of pyruvate formate-lyase from Escherichia coli K-12. J Bacteriol 170:5330–5336.

    PubMed  CAS  Google Scholar 

  • Sawers RG, Ballantine SP, Boxer DH, 1985. Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J Bacteriol 164:1324–1331.

    PubMed  CAS  Google Scholar 

  • Schauer NL, Brown DP, Ferry JG, 1982. Kinetics of formate metabolism in Methanobacterium formicicum and Methanospirillum hungatei. Appl Environ Microbiol 44:549–554.

    PubMed  CAS  Google Scholar 

  • Schauer NL, Ferry JG, 1980. Metabolism of formate in Methanobacterium formicicum. J Bacteriol 142:800–807.

    PubMed  CAS  Google Scholar 

  • Schauer NL, Ferry JG, 1982. Properties of formate dehydrogenase in Methanobacterium formicicum. J Bacteriol 150:1–7.

    PubMed  CAS  Google Scholar 

  • Schauer NL, Ferry JG, 1983. FAD requirement for the reduction of coenzyme F420 by formate dehydrogenase from Methanobacterium formicicum. J Bacteriol 155:467–472.

    PubMed  CAS  Google Scholar 

  • Schauer NL, Ferry JG, 1986. Composition of the coenzyme F420-dependent formate dehydrogenase from Methanobacterium formicicum. J Bacteriol 165:405–411.

    PubMed  CAS  Google Scholar 

  • Schauer NL, Ferry JG, Honek JF, Orme-Johnson WH, Walsh C, 1986. Mechanistic studies of the coenzyme F420 reducing formate dehydrogenase from Methanobacterium formicicum. Biochem USA 25:7163–7168.

    CAS  Google Scholar 

  • Scherer PA, Thauer RK, 1978. Purification and properties of reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum, a molybdenum iron-sulfur-protein. Eur J Biochem 85:125–135.

    PubMed  CAS  Google Scholar 

  • Schink B, 1984. Fermentation of tartrate enantiomers by anaerobic bacteria, and description of two new species of strict anaerobes, Ruminococcus pasteurii and Ilyobacter tartaricus. Arch Microbiol 139:409–414.

    CAS  Google Scholar 

  • Schuber AP, Orr EC, Recny MA, Schendel PF, May HD, Schauer NL, Ferry JG, 1986. Cloning, expression, and nucleotide sequence of the formate dehydrogenase genes from Methanobacterium formicicum. J Biol Chem 261:12942–12947.

    Google Scholar 

  • Shaw DJ, Guest JR, 1982. Amplification and product identification of the fnr gene of Escherichia coli. J Gen Microbiol 128:2221–2228.

    PubMed  CAS  Google Scholar 

  • Smith RL, Strohmaier FE, Oremland RS, 1985. Isolation of anaerobic oxalate-degrading bacteria from freshwater lake sediments. Arch Microbiol 141:8–13.

    CAS  Google Scholar 

  • Sparling R, Daniels L, 1986. Source of carbon and hydrogen in methane produced from formate by Methanococcus thermolithotrophicus. J Bacteriol 168:1402–1407.

    PubMed  CAS  Google Scholar 

  • Stadtman TC, 1980. Biological functions of selenium. Trends Biochem Sci August:203–206.

    Google Scholar 

  • Stewart V, Berg BL, 1988. Influence of nar (nitrate reductase) genes on nitrate inhibition of formate-hydrogen lyase and fumarate reductase gene expression in Escherichia coli K-12. J Bacteriol 170:4437–4444.

    PubMed  CAS  Google Scholar 

  • Terriere C, Giordano G, Medani C, Boxer DH, Haddock BA, Azoulay E, 1981. Precursor forms of formate dehydrogenase in chlA and chlB mutants of Escherichia coli. FEMS Microbiol Lett 11:287–293.

    CAS  Google Scholar 

  • Thauer RK, Fuchs G, Jungermann K, 1977a. Role of iron-sulfur proteins in formate metabolism. In: Lovenberg L (ed) Iron Sulfur Proteins. Academic Press, Inc., New York, pp 121–157.

    Google Scholar 

  • Thauer RK, Fuchs G, Kaufer B, 1975. Reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum. Hoppe-Seyler’s Z Physiol Chem 356:653–662.

    PubMed  CAS  Google Scholar 

  • Thauer RK, Fuchs G, Schnitker U, Jungermann K, 1973. CO2 reductase from Clostridium pasteurianum: molybdenum dependence of synthesis and inactivation by cyanide. FEBS Lett 38:45–48.

    PubMed  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K, 1977b. Energy conservation in chemolithotrophic anaerobic bacteria. Bacteriol Rev 41:100–180.

    CAS  Google Scholar 

  • Thauer RK, Kaufer B, Fuchs G, 1975. The active species of ‘CO2’ utilized by reduced ferredoxin: CO2 oxidoreductase. Eur J Biochem 55:111–117.

    PubMed  CAS  Google Scholar 

  • Thiele JH, Chartrain M, Zeikus JG, 1988. Control of interspecies electron flow during anaerobic digestion: role of floe formation in Syntropie methanogenesis. Appl Environ Microbiol 54:10–19.

    PubMed  CAS  Google Scholar 

  • Thiele JH, Zeikus JG, 1988. Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenis in floes. Appl Environ Microbiol 54:20–29.

    PubMed  CAS  Google Scholar 

  • Tschech A, Pfennig N, 1984. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137:163–167.

    CAS  Google Scholar 

  • Tzeng S-F, Bryant MP, Wolfe RS, 1975. Factor 420-dependent pyridine nucleotide-linked formate metabolism of Methanobacterium ruminantium. J Bacteriol 121:192–196.

    CAS  Google Scholar 

  • Wagner R, Andreesen JR, 1977. Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation. Arch Microbiol 114:219–224.

    PubMed  CAS  Google Scholar 

  • Wahl RC, Rajagopalan KV, 1982. Evidence for the inorganic nature of the cyanolyzable sulfur of molybdenum hydroxylases. J Biol Chem 257:1354–1359.

    PubMed  CAS  Google Scholar 

  • Widdel F, 1988. Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of Anaerobic Microorganisms. John Wiley and Sons, New York, pp 469–585.

    Google Scholar 

  • Wolfe RS, Pfennig N, 1977. Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium. Appl Environ Microbiol 33:427–433.

    PubMed  CAS  Google Scholar 

  • Wolin MJ, Miller TL, 1980. Molybdate and sulfide inhibit H2 and increase formate production from glucose by Ruminococcus albus. Arch Microbiol 124:137–142.

    PubMed  CAS  Google Scholar 

  • Wu LF, Mandrand-Berthelot M-A, 1987. Regulation of the fdhF gene encoding of the selenopolypeptide for benzyl viologen-linked formate dehydrogenase in Escherichia coli. Mol Gen Genet 209:129–134.

    PubMed  CAS  Google Scholar 

  • Yagi T, 1979. Purification and properties of cytochrome c-553, an electron acceptor for formate dehydrogenase of Desulfovibrio vulgaris, Miyazaki. Biochim Biophys Acta 548:96–105.

    PubMed  CAS  Google Scholar 

  • Yamamoto I, Saiki T, Liu S-M, Ljungdahl LG, 1983. Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem 258:1826–1832.

    PubMed  CAS  Google Scholar 

  • Yerkes JH, Casson LP, Honkanen AK, Walker GC, 1984. Anaerobiosis induces expression of ant, a new Escherichia coli locus with a role in anaerobic electron transport. J Bacteriol 158:180–186.

    PubMed  CAS  Google Scholar 

  • Yoch DC, Lindstrom ES, 1969. Nicotinamide adenine dinucleotide-dependent formate dehydrogenase from Rhodopseudomonas palustris. Arch Mikrobiol 67:182–188.

    PubMed  CAS  Google Scholar 

  • Zindel U, Freudenberg W, Rieth M, Andreesen JR, Schnell J, Widdel F, 1988. Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Description and enzymatic studies. Arch Microbiol 150:254–266.

    CAS  Google Scholar 

  • Zinoni F, Beier A, Pecher A, Wirth R, Bock A, 1984. Regulation of the synthesis of hydrogenase-(formate hydrogen-lyase linked) of E. coli. Arch Microbiol 139:299–304.

    PubMed  CAS  Google Scholar 

  • Zinoni F, Birkmann A, Leinfelder W, Bock A, 1987. Cotranslational insertion of selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codon. Proc Natl Acad Sci 84:3156–3160.

    PubMed  CAS  Google Scholar 

  • Zinoni F, Birkmann A, Stadtman TC, Bock B, 1986. Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate hydrogen-lyase linked) from Escherichia coli. Proc Natl Acad Sci USA 83:4650–4654.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ferry, J.G. (1990). Formate Dehydrogenase: Microbiology, Biochemistry and Genetics. In: Codd, G.A., Dijkhuizen, L., Tabita, F.R. (eds) Autotrophic Microbiology and One-Carbon Metabolism. Advances in Autotrophic Microbiology and One-Carbon Metabolism, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1978-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1978-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7384-4

  • Online ISBN: 978-94-009-1978-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics