Skip to main content

Denitrification by Obligate and Facultative Autotrophs

  • Chapter
Autotrophic Microbiology and One-Carbon Metabolism

Abstract

Denitrification is the use of nitrate, nitrite or the other nitrogen oxides as terminal electron acceptors in bacterial respiration. The end product is generally N2, although a few species appear to terminate at N2O (Gayon & Dupetit 1882;. Payne 1981; Stouthamer 1988a; 1988b). Some organisms can only convert nitrate to nitrite, a process known as nitrate respiration, although many (e.g. Escherichia coli and Proteus mirablis) can then reduce the nitrite to ammonia (Cole 1987; Cole & Brown 1980). This last is generally termed dissimilatory nitrate reduction in order to distinguish it from denitrification, where nitrogen is actually lost. In many organisms, the primary role of dissimilatory nitrate reduction is to serve as an additional sink for electrons during fermentative metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alefounder PR and Ferguson SJ, 1981. The location of dissimilatory nitrite reductase and the control of dissimilatory nitrate reductase by oxygen in Paracoccus denitrificians. Biochem. J. 192: 231–240.

    Google Scholar 

  • Alefounder PR, Greenfield AJ, McCarthy JEG and Ferguson SJ, 1983. Selection and organization of denitrifying electron transfer pathways in Paracoccus denitrificans. Biochim Biophys. Acta 724: 20–39.

    Article  CAS  Google Scholar 

  • Alefounder PR, Greenfield AJ, McCarthy JEG and Ferguson SJ, 1984. The basis for preferential electron flow to oxygen rather than nitrogen oxides in the denitrifying bacterium Paracoccus denitrificans. In Microbial Gas Metabolism — Mechanistic, Metabolic and Biotechnological Aspects. RK Poole and CS Dow (ed.). Academic Press, pp. 225–230.

    Google Scholar 

  • Beijerinck MW, 1904. Uber die Bakteriën, welche sich im dunkeln mit kohlensaure als kohlenstoffquelle ernahren konnen. Zentrabl Bakteriol Parasitenkd Infektionskr Hyg 11: 592–599.

    Google Scholar 

  • Beijerinck MW, and Minkman DCJ, 1910. Bildung und verbrauch von stickoxydul durch bakterien. Zentrabl Bakteriol Parasitenkd Infektionskr Hyg 25: 30–63.

    Google Scholar 

  • Bock E, Koops H-P and Harms H, 1986. Cell biology of nitrifying bacteria. In: Nitrification JI Prosser (ed) IRL Press pp. 17–38.

    Google Scholar 

  • Bock E, Wilderer PA and Freitag A, 1988. Growth of Nitrobacter in the absence of dissolved oxygen. Wat Res 22: 245–250.

    Article  CAS  Google Scholar 

  • Bonnet-Smits EM, Robertson LA, van Dijken JP, Senior E and Kuenen JG, 1988. Carbon dioxide fixation as the initial step in the metabolism of acetone by Thiosphaera pantotropha. J Gen Microbiol 134: 2281–2289.

    CAS  Google Scholar 

  • Boogerd FC, 1984. Energetic aspects of denitrification in Paracoccus denitrification. PhD thesis. Free University of Amsterdam, the Netherlands.

    Google Scholar 

  • Bowien B and Schlegel HG, 1981. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Ann Rev Microbiol 35: 405–452.

    Article  CAS  Google Scholar 

  • Brannan DK and Caldwell DE, 1980. Thermothrix thiopara: Growth and metabolism of a newly isolated thermophile capable of oxidizing sulfur and sulfur compounds. Appl Env Microbiol 40: 211–216.

    CAS  Google Scholar 

  • Bremner JM and Blackmer AM, 1981. Terrestial nitrification as a source of atmospheric nitrous oxide. In: Denitrification, Nitrification and Atmospheric Nitrous Oxide, CC Delwiche (ed) John Wiley and Sons. pp. 151–170.

    Google Scholar 

  • Broda E, 1977. Two kinds of lithotrophs missing in nature. Zeitschr für Allg Mikrobiol 17: 491–493.

    Article  CAS  Google Scholar 

  • Castignetti D and Hollocher TC, 1984. Heterotrophic nitrification among denitrifiers. Appl Env Microbiol 47: 620–623.

    CAS  Google Scholar 

  • Chan Y-K, 1985. Denitrification by a diazotrophic Pseudomonas species. Can J Microbiol 31: 1136–1141.

    Article  CAS  Google Scholar 

  • Claasen PAM and Zehnder AJB, 1986. Isocitrate lyase activity in Thiobacillus versutus grown anaerobically on acetate and nitrate. J Gen Microbiol 132: 3179–3185.

    Google Scholar 

  • Claasen PAM, Kortsee GJJ, van Dijken JP and Harder W, 1986. Tricarboxylic acid and glyoxylate cycle enzyme activities in Thiobacillus versutus, an isocitrate lyase negative organism. Arch Microbiol 145: 148–152.

    Article  Google Scholar 

  • Cole JA, 1987. Assimilatory and dissimilatory reduction of nitrate to ammonia. In: The Nitrogen and Sulphur Cycles. JA Cole and SJ Ferguson (ed). Cambridge University Press, pp. 281–330.

    Google Scholar 

  • Cole JA and Brown CM, 1980. Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle. FEMS Microbiol. Letts 7: 65–72.

    Article  CAS  Google Scholar 

  • Doudoroff M, Contopoulou R, Kunisawa R and Palleroni NJ, 1974. Taxonomic validity of Pseudomonas denitrificans (Christensen) Bergey et al. Int J Syst Bacteriol 24: 294–300.

    Article  Google Scholar 

  • Friedrich CG and Mitrenga G, 1981. Oxidation of thiosulphate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol Letts 10: 209–212.

    Article  CAS  Google Scholar 

  • Freitag A, Rudert M and Bock E, 1987. Growth of Nitrobacter by dissimilatory nitrate reduction. FEMS Microbiol Letts 48: 105–109.

    Article  CAS  Google Scholar 

  • Gayon U and Dupetit G, 1886. Recherches sur la reduction des nitrates par les infinement petits. Mem Soc Sci Phys Nat Bordeaux Ser 32: 201–307.

    Google Scholar 

  • Gottschal JC and Kuenen JG, 1980. Mixotrophic growth of Thiobacillus A2 on acetate and thiosulphate as growth limiting substrates in the chemostat. Arch Microbiol 126:33–42.

    Article  CAS  Google Scholar 

  • Hamer G and Meschner K, 1984. Specialized bacterial associations for denitrification in integrated biotreatment processes. In: Proceedings of the 3rd European Congress on Biotechnology vol 3. Verlag Chemie, pp. 61–68.

    Google Scholar 

  • Hooper AB, 1968. A nitrite-reducing enzyme from Nitrosomonas europaea. Preliminary characterization with hydroxylamine as electron donor. Biochim Biophys Acta 162: 49–65.

    Article  PubMed  CAS  Google Scholar 

  • Hooper AB, 1984. Ammonium oxidation and energy transduction in the nitrifying bacteria. In: Mirobial Chemoautotrophy WR Strohl and OH Tuovinen (ed). Ohio State University Press, pp. 133–167.

    Google Scholar 

  • Hynes RK and Knowles R, 1984. Production of nitrous oxide by Nitrosomonas europaea: effects of acetylene, pH and oxygen. Can J Microbiol 30: 1397–1404.

    Article  CAS  Google Scholar 

  • Iwasaki H, Noji S and Shidara S, 1975. Achromobacter cycloclastes nitrite reductase. The function of copper, amino acid composition and ESR spectra. J Biochem 78: 355–361.

    PubMed  CAS  Google Scholar 

  • JCSB (1982) Judicial Commission of the International Committee on Systemic Bacteriology. Opinion 54: Rejection of the species Pseudomonas denitrificans (Christensen) Bergey et al. 1923. Int J Syst Bacteriol 32: 466.

    Article  Google Scholar 

  • Justin P and Kelly DP, 1978a. Metabolic changes in Thiobacillus denitrificans accompanying the transition from aerobic to anaerobic growth in continuous chemostat culture. J Gen Microbiol 107: 131–137.

    CAS  Google Scholar 

  • Justin P and Kelly DP, 1978b. Growth kinetics of Thiobacillus denitrificans in anaerobic and aerobic chemostat culture. J Gen Microbiol 107: 123–130.

    CAS  Google Scholar 

  • Kawasumi T, Igarashi Y, Kodama T and Minoda Y, 1984. Hydrogenobacter thermophilus gen nov, sp nov, an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 34: 5–10.

    Article  CAS  Google Scholar 

  • Kelly DP, 1989a. The genus Thiobacillus. Bergey’s Manual of Determinative Bacteriology. Vol 3. JT Staley, N Pfennig, MP Bryant and JG Holt (ed). 9th edition, pp 1842–1858.

    Google Scholar 

  • Kelly DP, 1989b. Physiology and biochemistry of unicellular sulfur bacteria. In: Autotrophic Bacteria. HG Schlegel and B Bowien (ed) Sci Tech Publishers, Madison Wi. pp. 193–218.

    Google Scholar 

  • Kluyver AJ, 1924. Eenheid en verscheidenheid in de stofwisseling der microben. Chemisch Weekblad 21: 266.

    CAS  Google Scholar 

  • Kryukov VR, Savel’la ND and Pusheva MA, 1983. Calderobacterium hydrogenophilum gen et sp nov, an extremely thermophilic hydrogen bacterium and its hydrogenase activity. Microbiologiya 52: 781–788.

    CAS  Google Scholar 

  • Kucera I and Dadák V, 1983. The effect of uncoupler on the distribution of the electron flow between the terminal acceptors oxygen and nitrite in the cells of Paracoccus denitrificans. Biochem Biophys Res Comm 117: 252–258.

    Article  PubMed  CAS  Google Scholar 

  • Kucera I, Bourblikova P and Dadák V, 1984. Function of terminal acceptors in the biosynthesis of denitrification pathway components in Paracoccus denitrificans Folia Microbiol 29: 108–114.

    Article  CAS  Google Scholar 

  • Kuenen JG and Robertson LA, 1987. Ecology of nitrification and denitrification. In: The Nitrogen and Sulphur Cycles. JA Cole and SJ Ferguson (ed). Cambridge University Press, pp. 161–218.

    Google Scholar 

  • Kuenen JG and Robertson LA, 1989a. The Genus Thiomicrospira. In: Bergey’s Manual of Determinative Bacteriology. Vol 3. JT Staley, N Pfennig, MP Bryant and JG Holt (ed). 9th edition, pp 1861–1862.

    Google Scholar 

  • Kuenen JG and Robertson LA, 1989b. The genus Thiosphaera. In: Bergey’s Manual of Determinative Bacteriology. Vol 3. JT Staley, N Pfennig, MP Bryant and JG Holt (ed). 9th edition. In press.

    Google Scholar 

  • Kuenen JG and Tuovinen OH, 1981. The genera Thiobacillus and Thiomicrospira. In The Prokaryotes. MP Starr, H Stolp, HG Truper, A Belows and HG Schlegel. Springer-Verlag, pp. 1023–1036.

    Google Scholar 

  • Lieske R, 1912. Untersuchungen über die physiologie denitrifizierender schwefelbakterien. Bar Deutsch Bot Gesell 30:12–22.

    Google Scholar 

  • Mason J and Kelly DP, 1988. Thiosulfate oxidation by obligately heterotrophic bacteria. Microb Ecol 15: 123–134.

    Article  CAS  Google Scholar 

  • Michalski WP and Nicholas DJD, 1985. Molecular characterization of a copper-containing nitrite reductase from Rhodopseudomonas sphaeroides forma sp. denitrificans. Biochim Biophys Acta 828: 130–137.

    Article  CAS  Google Scholar 

  • Michalski WP, Hein DH and Nicholas DJD, 1986. Purification and characterization of nitrous oxide reductase from Rhodopseudomonas sphaeroides forma sp. denitrificans. Biochim Biophys Acta 872: 50–60.

    Article  CAS  Google Scholar 

  • Nanninga HJ, Medema GJ, van Niel EWJ, Robertson LA and Kuenen JG, 1988. Thiosphaera pantotropha and the treatment of sulfur- and nitrogen-containing wastes. Proceedings of the 2nd Netherlands Biotechnology Congress. H Breteler, PH van Lelyveld and KChAM Luyben Netherlands Biotechnological Society (publishers) pp. 122–126.

    Google Scholar 

  • Nokhal T-H and Schlegel HG, 1983. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 33: 26–37.

    Article  Google Scholar 

  • Payne WJ, 1981. Denitrification. John Wiley and Sons.

    Google Scholar 

  • Piftzner J and Schlegel HG, 1973. Denitrifikation bei Hydrogenomonas eutropha stamm H16. Arch Mikrobiol 90: 199–211.

    Article  Google Scholar 

  • Poth M, 1986. Dinitrogen production from nitrite by a Nitrosomonas isolate. Appl Env Microbiol 52: 957–959.

    CAS  Google Scholar 

  • Poth M and Focht DD, 1985. 95N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification. Appl Env Microbiol 49: 1134–1141.

    CAS  Google Scholar 

  • Ritchie GAF and Nicholas DJD, 1972. Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea. Biochem J 126: 1181–1191.

    PubMed  CAS  Google Scholar 

  • Robertson LA, 1988. Aerobic denitrification and heterotrophic nitrification in Thiosphaera pantotropha and other bacteria. PhD Thesis. Delft University of Technology, the Netherlands.

    Google Scholar 

  • Robertson LA and Kuenen JG, 1983. Thiosphaera pantotropha gen nov sp nov, a facultatively anaerobic, facultatively autotrophic sulphur bacterium. J Gen Microbiol 129: 2847–2855.

    CAS  Google Scholar 

  • Robertson LA and Kuenen JG, 1984a. Aerobic denitrification: a controversy revived. Arch Microbiol 139: 351–354.

    Article  CAS  Google Scholar 

  • Robertson LA and Kuenen JG, 1984b. Aerobic denitrification — old wine in new bottles? Antonie van Leeuwenhoek 50: 525–544.

    Article  PubMed  CAS  Google Scholar 

  • Robertson LA and Kuenen JG, 1988. Heterotrophic nitrification in Thiosphaera pantotropha — oxygen uptake and enzyme studies. J Gen Microbiol 134: 857–863.

    CAS  Google Scholar 

  • Robertson LA, Cornelisse R, Zheng R and Kuenen JG, 1989a. The effect of thiosulphate and other inhibitors of autotrophic nitrification on heterotrophic nitrifiers. Antonie van Leeuwenhoek 56: 301–309.

    Article  PubMed  CAS  Google Scholar 

  • Robertson LA, Cornelisse R, de Vos P, Hadioetomo R and Kuenen JG, 1989b. Aerobic denitrification in various heterotrophic nitrifiers. Antonie van Leeuwenhoek 56: 289–299.

    Article  PubMed  CAS  Google Scholar 

  • Robertson LA, van Kleeff BHA and Kuenen JG (1986). A microcomputer-based method for semi-continuous monitoring of biological activities J Microbiol Methods 5: 237–242.

    Article  CAS  Google Scholar 

  • Robertson LA, van Niel EWJ, Torremans RAM and Kuenen JG, 1988. simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl. Env. Microbiol. 54: 2812–2818.

    CAS  Google Scholar 

  • Stouthamer AH, 1980. Bioenergetics studies on Paracoccus denitrificans. Trends Biochem Sci 5: 164–166.

    Article  CAS  Google Scholar 

  • Stouthamer AH, 1988a. Dissimilatory reduction of oxidized nitrogen compounds. In: Environmental Microbiology of Anaerobes. AJB Zehnder (ed). John Wiley and Sons. pp. 245–303.

    Google Scholar 

  • Stouthamer AH, 1988b. Bioenergetic and yields with electron acceptors other than oxygen. In: Handbook on Anaerobic Fermentations. LE Erikson and D Yee-Chak Fung (ed) Marcel Dekker Inc pp. 345–440.

    Google Scholar 

  • Suylen GMH, 1988. Microbial metabolism of dimethyl sulphide and related compounds. PhD Thesis Delft University of Technology, the Netherlands.

    Google Scholar 

  • Suylen GMH and Kuenen JG, 1986. Chemostat enrichment and isolation of Hyphomicrobium EG, a dimethyl sulphide oxidizing methylotroph and reevaluation of Thiobacillus MSI. Antonie van Leeuwenhoek 52: 281–293.

    Article  PubMed  CAS  Google Scholar 

  • Timmer ten Hoor A, 1975. A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp no v. Neth J Sea Res 9: 343–353.

    Google Scholar 

  • Timmer ten Hoor, 1977. Denitrificerende kleurloze zwavelbacterien. PhD thesis, University of Groningen, the Netherlands.

    Google Scholar 

  • van Iterson Jr G, 1902. Accumulation experiments with denitrifying bacteria. Proc Kon AkAd v Wetensch Amsterdam 5: 148–162.

    Google Scholar 

  • van Niel EWJ, Robertson LA and Kuenen KG, 1988. Proceedings of the 2nd Netherlands Biotechnology Congress. H Breteler, PH van Lelyveld and KChAM Luyben (ed) Netherlands Biotechnological Society, p. 138.

    Google Scholar 

  • Verstraete W, 1975. Heterotrophic nitrification in soils and aqueous media. Izvestija Akademii Nauk SSSR Ser Biol 4: 541–558.

    Google Scholar 

  • Wood AP and Kelly DP, 1983. Autotrophic, mixotrophic and heterotrophic growth with denitrification by Thiobacillus A2 under anaerobic conditions. FEMS Microbiol Lett 16: 363–370.

    Article  CAS  Google Scholar 

  • Yoshinari T, 1980. N2O reduction by Vibrio succinogenes. Appl Env Microbiol 39: 81–84.

    CAS  Google Scholar 

  • Zumft WG and Matsubara T, 1982. A novel kind of multi-copper protein as terminal oxidoreductase of nitrous oxide respiration in Pseudomonas perfectomarinus. FEBS Letts 148: 107–112.

    Article  CAS  Google Scholar 

  • Zumft WG, Viebrock A and Korner H, 1987. Biochemical and physiological aspects of denitrification. In: The Nitrogen and Sulphur Cycles. JA Cole and SJ Ferguson (ed). Cambridge University Press, pp. 245–280.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Robertson, L.A., Kuenen, J.G. (1990). Denitrification by Obligate and Facultative Autotrophs. In: Codd, G.A., Dijkhuizen, L., Tabita, F.R. (eds) Autotrophic Microbiology and One-Carbon Metabolism. Advances in Autotrophic Microbiology and One-Carbon Metabolism, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1978-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1978-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7384-4

  • Online ISBN: 978-94-009-1978-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics