Skip to main content

Finding a common ordination for several data sets by individual differences scaling

  • Chapter
Progress in theoretical vegetation science

Part of the book series: Advances in vegetation science ((AIVS,volume 11))

  • 278 Accesses

Abstract

Individual differences scaling is a multidimensional scaling method for finding a common ordination for several data sets. An individual ordination for each data set can then be derived from the common ordination by adjusting the axis lengths so as to maximize the correlations between observed proximities and individual ordination distances. The importance of the various axes for each data set and the mutual similarities and goodness of fit for the individual data sets are described by weight plots. As an example, 46 soft-water lakes in eastern Finland are ordinated on two dimensions according to 3 chemical data sets (water in summer and autumn, sediment) and 4 biological sets (major phytoplankton groups, phytoplankton, surface sediment diatom and cladoceran assemblages). The method seems to be effective as a means of ordination for obtaining the common ordination for the data sets. The major taxonomic groups gave the ordination which differed most clearly from the ordinations of the other data sets. Phytoplankton was most poorly ordinated in all the analyses. The other data sets were fairly coherent. When only biological data sets were ordinated, the diatoms and cladocerans showed rather different patterns. It seems that the cladocerans are best correlated with water chemistry, both according to weights in the joint analysis, and according to correlation between the axes from the biological data sets and the chemical variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CCA:

Canonical correspondence analysis

IDS:

Individual differences scaling

MDS:

multidimensional scaling

PCA:

Principal components analysis

References

  • Allen, T. F. H., Sadowsky, D. A. & Woodhead, N. 1984. Data transformations as scaling operation in ordination of plankton. Vegetatio 56: 147–160.

    Google Scholar 

  • Carroll, J. D. 1987. Some multidimensional scaling and related procedures devised at Bell Laboratories, with ecological applications. In: Legendre, P. & Legendre, L. (eds), Developments in numerical ecology. NATO ASI Ser. Vol. G14: 65–138. Springer, Heidelberg.

    Google Scholar 

  • Carroll, J. D. & Chang, J.-J. 1970. Analysis of individual differences in multidimensional scaling via an N-way generalization of ‘Eckart-Young’ decomposition. Psy-chometrika 35: 283–319.

    Google Scholar 

  • Clarkson, D. 1988. Remark AS 1274: A least squares version of algorithm AS211: the F-G diagonalization algorithm. Appl. Statist. 37: 317–321.

    Article  Google Scholar 

  • Flury, B. N. 1984. Common principal components in k groups. J. Amer. Statist. Ass. 79: 892–898.

    Article  Google Scholar 

  • Flury, B. N. 1987. Two generalizations of the common principal component model. Biometrika 74: 59–69.

    Article  Google Scholar 

  • Flury, B. N. 1988. Common principal components and related multivariate models. J. Wiley & Sons, New York.

    Google Scholar 

  • Flury, B. N. & Constantine, G. 1985. Algorithm AS211: the FG diagonalization algorithm. Appl. Statist. 34: 177–183.

    Article  Google Scholar 

  • Gauch, H.G., Whittaker, R. H. & Singer, S. B. 1981. A comparative study of nonmetric ordinations. J. Ecol. 69: 135–152.

    Article  Google Scholar 

  • Gittins, R. 1985. Canonical analysis: a review with applications in ecology. Springer, Heidelberg.

    Google Scholar 

  • Gray, L. & King, J. A. 1986. The use of multidimensional scaling to determine principal resource axes. Amer. Nat. 127: 577–592.

    Article  Google Scholar 

  • Huttunen, P. & Meriläinen, J. 1983. Interpretation of lake quality from contemporary diatom assemblages. Hy-drobiologia 103: 91–97.

    CAS  Google Scholar 

  • Huttunen, P. & Meriläinen, J. 1985. Applications of multivariate techniques to infer limnological conditions from diatom assemblages. In: Smol, J., Battarbee, R., Davis, R. & Meriläinen, J. (eds), Diatoms and lake acidity, pp. 201–211. Junk, Dordrecht.

    Google Scholar 

  • Huttunen, P., Meriläinen, J., Cotten, C. & Rönkkä, J. 1988. Attempts to reconstruct lake water pH and colour from sedimentary diatoms and Cladocera. Verh. Internat. Verein. Limnol. 23: 870–873.

    Google Scholar 

  • Ilmavirta, V., Huttunen, P. & Meriläinen, J. 1984. Phyto-plankton in 151 eastern Finnish lakes: species composition and its relation to the the water chemistry. Verh. Internat. Verein. Limnol. 22: 822–828.

    CAS  Google Scholar 

  • Jongman, R. H. G., ter Braak, C. J. F. & van Tongeren, O. F. R. 1987. Data analysis in community and landscape ecology. Pudoc, Wageningen.

    Google Scholar 

  • Legendre, L. & Legendre, P. 1983. Numerical ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Meriläinen, J. & Huttunen, P. 1984. Ecological interpretations of diatom assemblages by means of two-way indicator species analysis (Twinspan). In: Mann, D. G. (ed.), Proc. 7th Int. Diatom Symp.: 385–391. Otto Koeltz, Koenigstein.

    Google Scholar 

  • Meriläinen, J. & Huttunen, P. 1984. Ecological interpretations of diatom assemblages by means of two-way indicator species annalysis (Twinspan). In: Mann, D. G. (ed.), Proc. 7th Int. Diatom Symp.: 385–391. Otto Koeltz, Koenigstein.

    Google Scholar 

  • Minchin, P. R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69: 89–107.

    Article  Google Scholar 

  • Oksanen, J., Läärä, E., Huttunen, P. & Meriläinen, J. 1988. Estimation of pH optima and tolerances of diatoms in lake sediments by the methods of weighted averaging, least squares and maximum likelihood, and their use for the prediction of lake acidity. J. Paleolimnol. 1: 39–49.

    Article  Google Scholar 

  • Pielou, E. C. 1984. The interpretation of ecological data: a primer on classification and ordination. J. Wiley & Sons, New York.

    Google Scholar 

  • Pruzansky, S. 1975. How to use SINDSCAL: a computer program for individual differences in multidimensional scaling. Bell Laboratories, Murray Hill NJ.

    Google Scholar 

  • Schiffman, S.S., Reynolds, M. L. & Young, F. W. 1981. Introduction to multidimensional scaling: theory, methods, and applications. Academic Press, Orlando.

    Google Scholar 

  • Sneath, P. H. A & Sokal, R. R. 1973. Numerical taxonomy: the principles and practice of numerical classification. W. H. Freeman & Co., San Francisco.

    Google Scholar 

  • ter Braak, C. J. F. 1983. Principal components biplots and alpha and beta diversity. Ecology 64: 454–462.

    Article  Google Scholar 

  • ter Braak, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Article  Google Scholar 

  • ter Braak, C. J. F. 1987a. CANOCO — a FORTRAN program for canonical community ordinations by (partial) (detrended) (canonical) correspondence analysis, principal components analysis and redundancy analysis (version 2.1). TNO Inst. Appl. Comp. Sci., Wageningen.

    Google Scholar 

  • ter Braak, C. J. F. 1987b. The analysis of vegetation — environment relationships by canonical correspondence analysis. Vegetatio 69: 69–77.

    Article  Google Scholar 

  • ter Braak, C. J. F. & Prentice, I. C. 1988. A theory of gradient analysis. Adv. Ecol. Res. 18: 271–317.

    Article  Google Scholar 

  • Upton, G. & Fingleton, B. 1985. Spatial data analysis by examples. 1. Point pattern and quantitative data. J. Wiley & Sons, Chichester.

    Google Scholar 

  • van Tongeren, O. F. R. 1988. Some models for secondary succession in grasslands and heathlands. Thesis, University of Nijmegen.

    Google Scholar 

  • Williams, B. K. 1983. Some observations on the use of discriminant analysis in ecology. Ecology 64: 1283–1291.

    Article  Google Scholar 

  • Yoccoz, N. & Chessel, D. 1988. Ordination sous contraintes de relevés d’avifaune: éliminations d’effects dans un plan d’observations à deux facteurs (Constrained ordination of bird count data: effects elimination in a two-factor experimental design). C.R. Acad. Sci. Paris (Ser. III) 307: 189–194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Grabherr L. Mucina M. B. Dale C. J. F. Ter Braak

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Oksanen, J., Huttunen, P. (1990). Finding a common ordination for several data sets by individual differences scaling. In: Grabherr, G., Mucina, L., Dale, M.B., Ter Braak, C.J.F. (eds) Progress in theoretical vegetation science. Advances in vegetation science, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1934-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1934-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7363-9

  • Online ISBN: 978-94-009-1934-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics