Skip to main content

Effects of detrending and rescaling on correspondence analysis: solution stability and accuracy

  • Chapter
Progress in theoretical vegetation science

Part of the book series: Advances in vegetation science ((AIVS,volume 11))

  • 277 Accesses

Abstract

Detrending and non-linear axis rescaling potentially improve the accuracy of gradient recovery in correspondence analyses but also reduce the stability or consistency of solutions. Variation among bootstrapped ordination solutions was compared across methods in analyses of both field and simulated data. Solution accuracy, measured with mean squared errors from Procrustes analysis, was compared using simulated data with known structure.

Standard detrending-by-segments combined with non-linear rescaling entailed some cost in solution stability, but could improve the accuracy of solutions for long gradients. Without non-linear rescaling these solutions were usually less stable and less accurate. Although detrending-by-polynomials might be preferable on other grounds, it did not produce more accurate or stable solutions than detrending-by-segments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CA:

correspondence analysis

DCA:

detrended correspondence analysis

MSE:

Procrustes mean squared error statistic

SD:

standard deviation units of species turnover

SRV:

scaled variance in species ranks

References

  • Bradfield, G. E. & Kenkel, N. C. 1987. Nonlinear ordination using flexible shortest path adjustment of ecological distances. Ecology 68: 750–753.

    Article  Google Scholar 

  • Faith, D. P., Minchin, P. R. & Beibin, L. 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69: 57–68.

    Article  Google Scholar 

  • Fasham, M. R. J. 1977. A comparison of nonmetric multidimensional scaling, principal components and reciprocal averaging for the ordination of simulated coenoclines, and coenoplanes. Ecology 58: 551–561.

    Article  Google Scholar 

  • Gauch Jr., H. G. 1982. Multivariate analysis in community ecology. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Gauch Jr., H. G. & Whittaker, R. H. 1972. Coenocline simulation. Ecology 53: 446–451.

    Article  Google Scholar 

  • Gauch Jr., H. G. & Whittaker, R. H. 1976. Simulation of community patterns. Vegetatio 33: 13–16.

    Article  Google Scholar 

  • Greenacre, M. J. 1984. Theory and applications of correspondence analysis. Academic Press, London.

    Google Scholar 

  • Hill, M. O. 1974. Correspondence analysis: a neglected multivariate method. Appl. Statist. 23: 340–354.

    Article  Google Scholar 

  • Hill, M. O. 1979. DECORANA — a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Section of Ecology and Systematics, Cornell University, Ithaca, New York.

    Google Scholar 

  • Hill, M. O. & Gauch Jr., H. G. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.

    Article  Google Scholar 

  • Ihm, P. & van Groenewoud, H. 1984. Correspondence analysis and gaussian ordination. In: Chambers, J. M., Gordesch, J., Klas, A., Lebart, L. & Sint, P. P. (eds), Compstat Lectures 3, Lectures in computational statistics. Physica-Verlag, Vienna.

    Google Scholar 

  • Jongman, R. H. G. ter Braak, C. J. F., & van Tongeren, O. F. R. 1987. Data analysis in community and landscape ecology. Pudoc, Wageningen.

    Google Scholar 

  • Kenkel, N. C. & Orlôci, L. 1986. Applying metric and non-metric multidimensional scaling to ecological studies: some new results. Ecology 67: 919–928.

    Article  Google Scholar 

  • Knox, R. G. & Peet, R. K. 1989. Bootstrapped ordination: a method for estimating sampling effects in indirect gradient analysis. Vegetatio 80: 153–165.

    Article  Google Scholar 

  • McLeod, D. E. 1988. Vegetation patterns, floristics, and environmental relationships in the Black and Craggy Mountains of North Carolina. Ph.D. Diss., University of North Carolina, Chapel Hill, North Carolina.

    Google Scholar 

  • Minchin, P. R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69: 89–107.

    Article  Google Scholar 

  • Oksanen, J. 1988. A note on the occasional instability of detrending in correspondence analysis. Vegetatio 74: 29–32.

    Article  Google Scholar 

  • Peet, R. K. & Christensen, N. L. 1980. Hardwood forests of the North Carolina piedmont. Veröff. Geobot. Inst. Rubel 69: 14–39.

    Google Scholar 

  • Peet, R. K., Knox, R. G., Case, J. S & Allen, R. 1988. Putting things in order: the advantages of detrended correspondence analysis. Amer. Nat. 131: 924–934.

    Article  Google Scholar 

  • Pielou, E. C. 1984. The interpretation of ecological data. Wiley, New York.

    Google Scholar 

  • Schöneman, P. H. & Carroll, R. M. 1970. Fitting one matrix to another under choice of a central dilation and a rigid motion. Psychometrika 35: 245–255.

    Article  Google Scholar 

  • ter Braak, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Article  Google Scholar 

  • ter Braak, C. J. F. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69–77.

    Article  Google Scholar 

  • ter Braak, C. J. F. 1988a. CANOCO — a FORTRAN program for canonical community ordination by [partial] [de-trended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1). Report LWA-88–02. Agricultural Mathematics Group, Wageningen.

    Google Scholar 

  • ter Braak, C. J. F. 1988b. CANOCO — and extension of DECORANA to analyze species-environment relationships. Vegetatio 75: 159–160.

    Google Scholar 

  • ter Braak, C. J. F. & Prentice, I. C. 1988. A theory of gradient analysis. Adv. Ecol. Res. 18: 271–317.

    Article  Google Scholar 

  • Wartenberg, D., Ferson, S. & Rohlf, F. J. 1987. Putting things in order: A critique of detrended correspondence analysis. Amer. Nat. 129: 434–448.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Grabherr L. Mucina M. B. Dale C. J. F. Ter Braak

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Knox, R.G. (1990). Effects of detrending and rescaling on correspondence analysis: solution stability and accuracy. In: Grabherr, G., Mucina, L., Dale, M.B., Ter Braak, C.J.F. (eds) Progress in theoretical vegetation science. Advances in vegetation science, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1934-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1934-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7363-9

  • Online ISBN: 978-94-009-1934-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics