Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 174))

  • 767 Accesses

Abstract

Bubble implosion during cavitation causes the emission of pressure waves which can be measured by pressure transducers as liquid-borne sound or by accelerometers at the outside of the pump casing as solid-borne sound. The fundamentals of noise generation in liquids by multipoles and of sound propagation in closed chambers are discussed. It is demonstrated that cavitation noise is proportional to the square of the speed which is confirmed by test results. From the sound measured by a pressure transducer within the reverberating field the strength of the source can be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ross, D. (1976) ‘Mechanics of underwater Noise’, Pergamon Press

    Google Scholar 

  2. Levi, E. (1983) ‘A universal Strouhal law’, J. Eng. Mech. 109 3, 718–727

    Google Scholar 

  3. Knapp, Daily, Hammit (1970) ‘Cavitation’, Mc Graw-Hill

    Google Scholar 

  4. Leduc D., Wegner M (1985) ‘Méthodes d’approche du bruit engendré par la cavitation’, La Houille Blanche No. 8, 697–708

    Google Scholar 

  5. Deeprose W.M. et al. (May 1972) ‘Cavitation noise in process pumps’, Chemical and Process Engng

    Google Scholar 

  6. Ramamurthy A.S. et al. (March 1979) ‘Velocity exponent for erosion and noise due to cavitation’, ASME J. of Fluids Engng 101, 69–75

    Article  Google Scholar 

  7. Selim S., Hutton S. (1981) ‘Hydrodynamic similitude for cavitation erosion’, ASME Conf. Cavitation erosion in fluid systems. Boulder Colorado 1981, p. 15–25

    Google Scholar 

  8. Lovik A. et al. (1977–7) ‘Basic and applied aspects of scaling of cavitation noise’, Inst, of Mech. Engrs. Conf. Publ. p. 33–39 (Conf. on Scaling for performance prediction in rotodynamic machines)

    Google Scholar 

  9. Canavelis R., Grison P. (1986) ‘Aspects industriels de la cavitation’, Revue Française de Mécanique, No. 4, 171–181

    Google Scholar 

  10. Franklin R.E., McMillan J. (Nov. 1982) ‘Noise generation in cavitating flows of submerged jets’, ASME Intl. Symp. on Cavitation Noise. Phoenix (Az)

    Google Scholar 

  11. Heckl M., Müller H.A. (1975) ‘Taschenbuch der Technischen Akustik’, Springer Verlag

    Google Scholar 

  12. De M.K., Hammit F.G. (1982) ‘New Method for Monitoring and Correlating Cavitation Noise to Erosion Capability’, Transactions ASME 104, 434–442

    Google Scholar 

  13. Abbot, P. (Sept. 1987) ‘Acoustic and vibration techniques for cavitation monitoring’ EPRI AP-5385

    Google Scholar 

  14. Avellan F., Karimi A. (Sept. 1987) ‘Dynamics of vortex cavitation involved in the erosion of hydraulic machines’, Proc. 7th Conf. on Erosion by Liquid and Solid Impact, Cambridge

    Google Scholar 

  15. Beranek L. (1971) ‘Noise and Vibration Control, Mc Graw-Hill

    Google Scholar 

  16. Spengler H. (1976) ‘Technisches Handbuch Pumpen’, VEB Verlag Technik. 5. Aufl.

    Google Scholar 

  17. Guelich J.F., Roesch A. (1988) ‘Kavitationserosion in Kreiselpumpen’, Technische Rundschau Sulzer No. 1, 28–32

    Google Scholar 

  18. Guelich J.F. (1981) ‘Energierückgewinnung mit Pumpen im Turbinenbetrieb bei Expansion von Zweiphasengemischen’, Technische Rundschau Sulzer, No. 3

    Google Scholar 

  19. Kuchling H. (1979) ‘Taschenbuch der Physik’, VEB-Fachbuch-Verlag Leipzig (S. 333)

    Google Scholar 

  20. Guelich J.F. (March 1987) ‘Influence of interaction of different components on hydraulic pump performance and cavitation’, EPRI Power plant Pump Symposium, New Orelans. EPRI Report CS-5857

    Google Scholar 

  21. Meyer E., Neumann E.G. (1967) ‘Physikalische und Technische Akustik’ Vieweg Verlag

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Guelich, J.F. (1990). Cavitation Noise in Centrifugal Pumps. In: Montalvão e Silva, J.M., Pina da Silva, F.A. (eds) Vibration and Wear in High Speed Rotating Machinery. NATO ASI Series, vol 174. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1914-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1914-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7354-7

  • Online ISBN: 978-94-009-1914-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics