Skip to main content

Adenylate Cyclase-Linked 5-Hydroxytryptamine Receptors in the Brain

  • Chapter
Book cover Serotonin

Abstract

The 5-hydroxytryptamine (5-HT) receptors which mediate the stimulation and inhibition of adenylate cyclase (AC; EC 4.6.1.1) activity were the subject of a recent review [De Vivo, M. and Maayani, S. (1988) in E. Sanders-Bush (ed.). The Serotonin Receptors, Humana Press, Clifton, N.J., pp. 141–179]. Highlights of the previous review are reiterated here, with a more detailed discussion of developments from the middle of 1987 through the end of 1988. Recent progress has included: 1) the discovery of additional 5-HT receptor subtypes; 2) the cloning and sequencing of one receptor subtype (5-HT1A) that is linked both positively and negatively to AC; 3) the identification of additional guanine nucleotide-binding proteins, some of which couple the 5-HT receptors to AC, and 4) attempts to determine the relationship between the mitogenic effects of 5-HT and its effects on AC activity in certain cell types. The recent suggestion that the 5-HT1A receptor and the adenosine A1 receptor may share the same effector system(s) in the same cells of the rat hippocampus was based on the similar toxin sensitivity and the non-additivity of the effects of 5-HT1A-specific ligands and adenosine analogs on AC activity and ion channel conductance in these cells. Further research is needed to elucidate the molecular basis for the apparent differences in the responsiveness to 5-HT of AC in the same tissue in various physiological or pathological states or in different regions of the brain in which the receptors appear to be the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Affolter, H., Erne, P., Burgisser, E. and Pletscher, A. (1984) ‘Ca2+ as messenger of 5-HT2-receptor stimulation in human blood platelets’, Naunyn-Schmiedeberg’s Arch. Pharmacol. 325, 337–342.

    Article  CAS  Google Scholar 

  2. Agarwal, K. C. and Steiner, M. (1976) ‘Effect of serotonin on cyclic nucleotides of human platelets’, Biochem. Biophys. Res. Commun. 69, 962–969.

    Article  PubMed  CAS  Google Scholar 

  3. Andrade, R., Malenka, R. C. and Nicoll, R. A. (1986) ‘A G protein couples serotonin and GABAg receptors to the same channels in hippocampus’. Science 234, 1261–1265.

    Google Scholar 

  4. Arunlakshana, O. and Schild, H. O. (1959) ‘Some quantitative uses of drug antagonists’, Br. J. Pharmacol. 14, 48 - 58.

    CAS  Google Scholar 

  5. Bockaert, J., Dumuis, A., Bouhelal, R., Sebben, M. and Cory, R. N. (1987) ‘Piperazine derivatives including the putative anxiolytic drugs, buspirone and ipsapirone, are agonists at the 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons’, Naunyn-Schmiedeberg’s Arch. Pharmacol. 335, 588–592.

    Article  CAS  Google Scholar 

  6. Bouhelal, R., Smounya, L. and Bockaert, J. (1988) ‘5-HT1B receptors are negatively coupled with adenylate cyclase in rat substantia nigra’, Eur. J. Pharmacol. 151, 189–196.

    Article  PubMed  CAS  Google Scholar 

  7. Bradley, P. B., Engel, G., Feniuk, W., Fozard, J. R., Humphrey, P. P. A., Middlemiss, D.N., Mylecharane, E. J., Richardson, B. P. and Saxena, P. R. (1986) ‘Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine’, Neuropharmacology 25, 563–576.

    Article  PubMed  CAS  Google Scholar 

  8. Bray, P., Carter, A., Simons, C., Guo, V., Puckett, C., Kamholz, J., Speigel, A. and Nirenberg, M. (1986) ‘Human cDNA clones for four species of Gαs signal transduction protein’, Proc. Natl. Acad. Sci. USA 83, 8893–8897.

    Article  PubMed  CAS  Google Scholar 

  9. Campbell, A. K. and Siddle, K. (1977) ‘The effect of 5-hydroxytryptamine and other indole derivatives on the formation of adenosine 3’,5’-cyclic monophosphate in pigeon erythrocytes’, Biochim. Biophys. Acta 497, 62–74.

    PubMed  CAS  Google Scholar 

  10. Casey, P. J. and Gilman, A. G. (1988) ‘G protein involvement in receptor-effector coupling’, J. Biol. Chem. 263, 2577–2580.

    PubMed  CAS  Google Scholar 

  11. Cassel, D. and Pfeuffer T. (1978) ‘Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system’, Proc. Natl. Acad. Sci. USA 75, 2669–2673.

    Article  PubMed  CAS  Google Scholar 

  12. Clarke, W. P., De Vivo, M., Beck, S. G., Maayani, S. and Goldfarb, J. (1987) ‘Serotonin decreases population spike amplitude in hippocampal cells through a pertussis toxin substrate’. Brain Res. 410, 357–361.

    Article  PubMed  CAS  Google Scholar 

  13. Daszuta, A., Pons, F. and Cadilhac, J. (1979) ‘Effect of serotonin on cyclic AMP level in rat hypothalamus slices during development’, Eur. J. Pharmacol. 56, 397 - 401.

    Article  PubMed  CAS  Google Scholar 

  14. Davoren, P. R. and Sutherland, E. W. (1963) ‘The effect of L-epinephrine and other agents on the synthesis and release of adenosine 3’,5’-phosphate by whole pigeon erythrocytes’, J. Biol. Chem. 238, 3009–3015.

    PubMed  CAS  Google Scholar 

  15. De Lean, A., Hancock, A. A. and Lefkowitz, R. J. (1982) ‘Validation and statistical analysis of a computer modeling method for quantitative analysis of radioligand binding data for mixtures of pharmacological receptor subtypes’, Mol. Pharmacol. 21, 5–16.

    PubMed  Google Scholar 

  16. De Vivo, M. and Maayani, S. (1985) ‘Inhibition of forskolin-stimulated adenylate cyclase activity by 5-HT receptor agonists’, Eur. J. Pharmacol. 119, 231–234.

    Article  Google Scholar 

  17. De Vivo, M. and Maayani, S. (1986) ‘Characterization of the 5-hydroxy- tryptamine1A receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes’, J. Pharmacol. Exp. Ther. 238, 248–253.

    PubMed  Google Scholar 

  18. De Vivo, M. and Maayani, S. (1988) ‘5-HT receptors coupled to adenylate cyclase’, in E. Sanders-Bush (ed.), The Serotonin Receptors, Humana Press, Clifton, N.J., pp. 141–179.

    Chapter  Google Scholar 

  19. Dumuis, A., Bouhelal, R., Sebben, M., Cory, R. and Bockaert, J. (1988) ‘A nonclassical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the central nervous system’, Mol. Pharmacol. 34, 880–887.

    PubMed  CAS  Google Scholar 

  20. Dumuis, A., Sebben, M. and Bockaert, J. (1988) ‘Pharmacology of 5-hydroxytryptamine-lA receptors which inhibit cAMP production in hippocampal and cortical neurons in primary culture’, Mol. Pharmacol. 33, 178–186.

    PubMed  CAS  Google Scholar 

  21. Engel, G., Gothert, M., Hoyer, D., Schlicker, E. and Hillenbrand, K. (1986) ‘Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HTjg binding sites’, Naunyn-Schmiedeberg’s Arch. Pharmacol. 332, 1–7.

    Article  CAS  Google Scholar 

  22. Euvrard, C. and Boissier, J.R. (1980) ‘Biochemical assessment of the central 5-HT agonist activity of RU 24969 (a piperidinyl indole)’, Eur. J. Pharmacol. 63, 65–72.

    Article  PubMed  CAS  Google Scholar 

  23. Exton, J.H. (1988) ‘Mechanisms of action of calcium-mobilizing agonists: Some variations on a young theme’, FASEB J. 2, 2670–2676.

    Google Scholar 

  24. Fargin, A., Raymond, J. R., Lohse, M. J., Kobilka, B. K., Caron, M. G. and Lefkowitz, R. J. (1988) ‘The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor’. Nature 335, 358–360.

    Article  PubMed  CAS  Google Scholar 

  25. Fayolle, C., Fillion, M.-P., Barone, P., Oudar, P., Rousselle, J.-C. and Fillion, G. (1988) ‘5-Hydroxytryptamine stimulates two distinct adenylate cyclase activities in rat brain: High-affinity activation is related to a 5-HT1 subtype different from 5-HT1A, 5-HT1B, and 5-HT1C’, Fundam. Clin. Pharmacol. 2, 195–214.

    Article  PubMed  CAS  Google Scholar 

  26. Forn, J. and Krishna, G. (1971) ‘Effect of norepinephrine, histamine and other drugs on cyclic 3’,5’-AMP formation in brain slices of various animal species’, Pharmacology 5, 193–204.

    Article  PubMed  CAS  Google Scholar 

  27. Gilman, A.G. (1987) ‘G proteins: Transducers of receptor-generated signals’, Annu. Rev. Biochem. 56, 615–649.

    Article  PubMed  CAS  Google Scholar 

  28. Goldsmith, P., Gierschik, P., Milligan, G., Unson, C. G., Vinitsky, R., Malech, H. L. and Spiegel, A. M. (1987) ‘Antibodies directed against synthetic peptides distinguish between GTP-binding proteins in neutrophils and brain’, J. Biol. Chem. 262, 14683–14688.

    PubMed  CAS  Google Scholar 

  29. Gozlan, H., El Mestikawy, S., Pichat, L., Glowinski, J. and Hamon, M. (1983) ‘Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT’, Nature 305, 140–142

    Article  PubMed  CAS  Google Scholar 

  30. Green, J.P. and Maayani, S. (1987) ‘Nomenclature, classification, and notation of receptors: 5-Hydroxytryptamine receptors and binding sites as examples’, in J.W. Black, D.H. Jenkinson and V.P. Gershowitch (eds.), Perspectives on Receptor Classification, Alan R. Liss, Inc., New York, pp. 237–267.

    Google Scholar 

  31. Hall, M. D., El Mestikawy, S., Emerit. M. B., Pichat, L., Hamon, M. and Gozlan, H. (1985) ‘[3H]8-Hydroxy-2-(di-n-propylamino)tetralin binding to pre-and postsynaptic 5-hydroxytryptamine sites in various regions of the rat brain’, J. Neurochem. 44, 1685–1696.

    Article  PubMed  CAS  Google Scholar 

  32. Hamon, M., Bourgoin, S., Gozlan, H. Hall, M. D., Goetz, C., Artaud, F. and Horn, A. S. (1984) ‘Biochemical evidence for the 5-HT agonist properties of PAT (8-hydroxy-2-(di-n-propylamino)tetralin) in the rat brain’, Eur. J. Pharmacol. 100, 263–276.

    Article  PubMed  CAS  Google Scholar 

  33. Hamon, M., Nelson, D. L., Herbet, A., Bockaert, J. and Glowinski, J. (1980) ‘Characteristics of serotonin receptors in the rat brain’, in E. Heldman, A. Levy, Y. Gutman and Z. Vogel (eds.), Neurobiology of Cholinergic and Adrenergic Transmitters, Monographs in Neural Sciences, Vol. 7, S. Karger, Basel, pp. 161–175.

    Google Scholar 

  34. Hartig, P.R. (1989) ‘Molecular biology of 5-HT receptors’, Trends Pharmacol. Sci. 10, 64–69.

    Article  PubMed  CAS  Google Scholar 

  35. Hemmings. H. C.. Jr.. Nairn A. C.. McGuinness. T. L.. Huganir, R. L. and Greengard, P. (1989) ‘Role of protein phosphorylation in neuronal signal transduction’, FASEB J. 3, 1583–1592.

    Google Scholar 

  36. Heuring, R. E. and Peroutka, S. J. (1987) ‘Characterization of a novel 5-hydroxytryptamine binding site subtype in bovine brain membranes’, J. Neurosci. 7, 894–903.

    PubMed  CAS  Google Scholar 

  37. Hough, L. B., Weinstein, H. and Green J. P. (1980) ‘One agonist and two receptors mediating the same effect: Histamine receptors linked to adenylate cyclase in the brain1’, in G. Pepeu, M. J. Kuhar and S. J. Enna (eds.), Receptors for Neurotransmitters and Peptide Hormones, Raven Press, New York, pp. 183–192.

    Google Scholar 

  38. Hoyer, D., Engel, G. and Kalkman, H. O. (1985) ‘Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: Radioligand binding studies with [3H]5-HT, [3H]8-OH-DPAT, (-) [125I]-iodocyanopindolol, [3H]mesulergine and [3H]ketanserin’, Eur. J. Pharmacol. 118, 13–23.

    Article  PubMed  CAS  Google Scholar 

  39. Hoyer, D. and Schoeffter, P. (1988) ‘5-HT1D receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in calf substantia nigra’, Eur. J. Pharmacol. 147, 145–147.

    Article  PubMed  CAS  Google Scholar 

  40. Innis, R. B., Nestler, E. J. and Aghajanian, G. K. (1988) ‘Evidence for G protein mediation of serotonin-and GABAg-induced hyperpolarization of rat dorsal raphe neurons’. Brain Res. 459, 27–36.

    Google Scholar 

  41. Jones, D. T. and Reed, R. R. (1987) ‘Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium,’ J. Biol. Chem. 262, 14241–14249.

    PubMed  CAS  Google Scholar 

  42. Julius, D., MacDermott, A. B., Axel, R. and Jessell, T. M. (1988) ‘Molecular characterization of a functional cDNA encoding the serotonin lc receptor’. Science 241, 558–564.

    Article  PubMed  CAS  Google Scholar 

  43. Kakiuchi, S. and Rail, T. W. (1968) ‘The influence of chemical agents on the accumulation of adenosine 3’,5’-phosphate in slices of rabbit cerebellum’, Mol. Pharmacol. 4, 367–378.

    PubMed  CAS  Google Scholar 

  44. Kakiuchi, S. and Rail, T. W. (1968) ‘Studies on adenosine 3’,5’-phosphate in rabbit cerebral cortex’, Mol. Pharmacol. 4, 379–388.

    PubMed  CAS  Google Scholar 

  45. Katada, T. and Ui, M. (1982) ‘Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein’, Proc. Natl. Acad. Sci. USA 79, 3129–3133.

    Article  PubMed  CAS  Google Scholar 

  46. Kavenaugh, W. M., Williams, L. T., Ives, H. E. and Coughlin, S. R. (1988) ‘Serotonin-induced deoxyribonucleic acid synthesis in vascular smooth muscle cells involves a novel, pertussis toxin-sensitive pathway’, Mol. Endocrinol. 2, 599–605.

    Article  Google Scholar 

  47. Kilpatrick, G. J., Jones, B. J. and Tyers, M. B. (1987) ‘Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding’, Nature 330, 746–748.

    Article  PubMed  CAS  Google Scholar 

  48. Kobilka, B. K., Frielle, T., Collins, S., Yang-Feng, T., Kobilka, T. S., Francke, U., Lefkowitz, R. J. and Caron, M. G. (1987) ‘An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins’. Nature 329, 75–79.

    Article  PubMed  CAS  Google Scholar 

  49. Leonhardt, S., Herrick-Davis, K. and Titeler, M. (1989) ‘Detection of a novel serotonin receptor subtype (5-HT1E) human brain: Interaction with a GTP-binding protein’, J. Neurochem. 53, 465–471.

    Article  PubMed  CAS  Google Scholar 

  50. Lyon, R.A., Davis, K.H. and Titeler, M. (1987),3H-DOB (4-bromo-2,5-dimethoxyphenylisopropylamine) labels a guanyl nucleotide-sensitive state of cortical 5-HT2 receptors’, Mol. Pharmacol. 31, 194–199.

    Google Scholar 

  51. Milligan, G., Gierschik, P. and Spiegel, A. M. (1987) ‘The use of specific antibodies to identify and quantify guanine nucleotide-binding proteins’, Biochem. Soc. Trans. 15, 42–45.

    PubMed  CAS  Google Scholar 

  52. Nelson, D. L., Herbet, A., Enjalbert, A., Bockaert, J. and Hamon, M. (1980) ‘Serotonin-sensitive adenylate cyclase and [3H]serotonin binding sites in the CNS of the rat-I. Kinetic parameters and pharmacological properties’, Biochem. Pharmacol. 29, 2445–2453.

    Article  PubMed  CAS  Google Scholar 

  53. Nelson, D. L. Herbet, A., Pichat, L., Glowinski, J. and Hamon, M. (1979) ‘In vitro and in vivo disposition of 3H-methiothepin in brain tissues. Relationship to the effects of acute treatment with methiothepin on central serotoninergic receptors’, Naunyn-Schmiedeberg’s Arch. Pharmacol. 310, 25–33.

    Article  CAS  Google Scholar 

  54. O’Brien, R. A., Boublik, M. and Spector, S. (1975) ‘Immunopharmacological studies using 5-hydroxytryptamine antibody’, J. Pharmacol. Exp. Ther. 194, 145–153.

    PubMed  Google Scholar 

  55. Palacios, J. M. and Dietl, M. M. (1988) ‘Autoradiographic studies of serotonin receptors’, in E. Sanders-Bush (ed.), The Serotonin Receptors, Humana Press, Clifton, N.J., pp. 89–138.

    Chapter  Google Scholar 

  56. Peroutka, S. J. (1988) ‘5-Hydroxytryptamine receptor subtypes’, Annu. Rev. Neurosci. 11, 45–60.

    Article  PubMed  CAS  Google Scholar 

  57. Pritchett, D. B., Bach, A. W. J., Wozny, M., Taleb, O., Dal Toso, R., Shih, J. C. and Seeburg, P. H. (1988) ‘Structure and functional expression of cloned rat serotonin 5HT-2 receptor’, EMBO J. 7, 4135–4140.

    Google Scholar 

  58. Robishaw, J.D., Smigel, M.D. and Gilman, A.G. (1986) ‘Molecular basis for two forms of the G protein that stimulates adenylate cyclase’, J. Biol. Chem. 261, 9587–9590.

    PubMed  CAS  Google Scholar 

  59. Rudman, D. (1978) ‘Effect of melanotropic peptides on adenosine 3’,5’-monophosphate accumulation by regions of rabbit brain’, Endocrinology 103, 1556–1561.

    Article  PubMed  CAS  Google Scholar 

  60. Salomon, Y. (1979) ‘Adenylate cyclase assay’, Adv. Cyclic Nucleotide Res. 10, 35–55.

    PubMed  CAS  Google Scholar 

  61. Salzman, E. W. and Levine, L. (1971) ‘Cyclic 3’,5’-adenosine monophosphate in human blood platelets. II. Effect of N6-2’-0-dibutyryl cyclic 3’,5’-adenosine monophosphate on platelet function’, J. Clin. Invest. 50, 131–141.

    Article  PubMed  CAS  Google Scholar 

  62. Sanders-Bush, E. (1988) ‘5-HT receptors coupled to phosphoinositol hydrolysis’, in E. Sanders-Bush (ed.), The Serotonin Receptors, Humana Press, Clifton, N.J., pp. 181–198.

    Chapter  Google Scholar 

  63. Sanders-Bush, E. (1988) ‘Appendix’, ibid., pp. 367–377.

    Google Scholar 

  64. Schoeffter, P., Waeber, C., Palacios, J.M. and Hoyer, D. (1988) ‘The 5-hydroxytryptamine 5-HT1D) receptor subtype is negatively coupled to adenylate cyclase in calf substantia nigra’, Naunyn-Schmiedeberg’s Arch. Pharmacol. 337, 602–608.

    Article  CAS  Google Scholar 

  65. Seuwen, K., Magnaldo, I. and Poussegur, J. (1988) ‘Serotonin stimulates DNA synthesis in fibroblasts acting through 5-HT1B receptors coupled to a Gi protein’, Nature 335, 254–256.

    Article  PubMed  CAS  Google Scholar 

  66. Shenker, A., Maayani, S., Weinstein, H. and Green, J. P. (1983) ‘Enhanced serotonin-stimulated adenylate cyclase in membranes from adult guinea pig hippocampus’. Life Sci. 32, 2335–2342.

    Article  PubMed  CAS  Google Scholar 

  67. Shenker, A., Maayani, S., Weinstein, H. and Green, J. P. (1985) ‘Two 5-HT receptors linked to adenylate cyclase in guinea pig hippocampus are discriminated by 5-carboxamidotryptamine and spiperone’, Eur. J. Pharmacol. 109, 427–429.

    Article  PubMed  CAS  Google Scholar 

  68. Shenker, A., Maayani, S., Weinstein, H. and Green, J. P. (1987) ‘Pharmacological characterization of two 5-hydroxytryptamine receptors coupled to adenylate cyclase in guinea pig hippocampal membranes’, Mol. Pharmacol. 31, 357–367.

    PubMed  CAS  Google Scholar 

  69. Sheppard, H. and Burghardt, C. R. (1970) ‘The stimulation of adenyl cyclase of rat erythrocyte ghosts’, Mol. Pharmacol. 6, 425–429.

    PubMed  CAS  Google Scholar 

  70. Sheppard, H. and Burghardt, C. R. (1971) ‘The effect of alpha, beta, and dopamine receptor-blocking agents on the stimulation of rat erythrocyte adenyl cyclase by dihydroxyphenethylamines and their β-hydroxylated derivatives’, Mol. Pharmacol. 7, 1–7.

    PubMed  CAS  Google Scholar 

  71. Stratford, C.A., Tan, G. L., Hamblin, M. W. and Ciaranello, R. D. (1988) ‘Differential inactivation and G protein reconstitution of subtypes of [3H]5-hydroxytryptamine binding sites in brain’, Mol. Pharmacol. 34, 527–536.

    PubMed  CAS  Google Scholar 

  72. Verge, D., Daval, G., Marcinkiewicz, M., Patey, A., El Mestikawy, S., Gozlan, H. and Hamon, M. (1986) ‘Quantitative autoradiography of multiple 5-HT1 receptor subtypes in the brain of control or 5,7-dihydroxytryptamine-treated rats’, J. Neurosci. 6, 3474–3482.

    PubMed  CAS  Google Scholar 

  73. Von Hungen, K. and Roberts, S. (1973) ‘Adenylate-cyclase receptors for adrenergic neurotransmitters in rat cerebral cortex’, Eur. J. Biochem. 36, 391–401.

    Article  Google Scholar 

  74. Von Hungen, K., Roberts, S. and Hill, D.F. (1974) ‘Developmental and regional variations in neurotransmitter-sensitive adenylate cyclase systems in cell-free preparations from rat brain’, J. Neurochem. 22, 811–819.

    Article  Google Scholar 

  75. Von Hungen, K., Roberts, S. and Hill, D.F. (1975) ‘Serotonin-sensitive adenylate cyclase activity in immature rat brain’, Brain Res. 84, 257–267.

    Article  Google Scholar 

  76. Waeber, C., Schoeffter, P., Palacios, J. M. and Hoyer, D. (1988) ‘Molecular pharmacology of 5-HT1D recognition sites: Radioligand binding studies in human, pig and calf membranes’, Naunyn-Schmiedeberg’s Arch. Pharmacol. 337, 595–601.

    Article  CAS  Google Scholar 

  77. Weiss, S., Sebben, M., Kemp, D. E. and Bockaert, J. (1986) ‘Serotonin 5-HT1 receptors mediate inhibition of cyclic AMP production in neurons’, Eur. J. Pharmacol. 120, 227–230.

    Article  PubMed  CAS  Google Scholar 

  78. Zgombick, J. M., Beck, S. G., Mahle, C. D., Craddock-Royal, B. and Maayani, S. (1989) ‘Pertussis toxin-sensitive guanine nucleotide- binding protein(s) couple adenosine A1 and 5-hydroxytryptamine1A receptors to the same effector systems in rat hippocampus: Biochemical and electrophysiological studies’, Mol. Pharmacol. 35, 484–494.

    PubMed  CAS  Google Scholar 

  79. Zieve, P. D. and Greenough, W. B., III (1969) ‘Adenyl cyclase in human platelets: Activity and responsiveness’, Biochem. Biophys. Res. Commun. 35, 462–466.

    Article  PubMed  CAS  Google Scholar 

  80. Zifa, E., Hernandez, J., Fayolle, C. and Fillion, G. (1988) ‘Post natal development of 5-HT1 receptors: [3H]5-HT binding sites and 5-HT induced adenylate cyclase activations in rat brain cortex’, Dev. Brain Res. 44, 133–140.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Maayani, S., Sherman, M.R. (1990). Adenylate Cyclase-Linked 5-Hydroxytryptamine Receptors in the Brain. In: Paoletti, R., Vanhoutte, P.M., Brunello, N., Maggi, F.M. (eds) Serotonin. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1912-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1912-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7353-0

  • Online ISBN: 978-94-009-1912-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics