Skip to main content

Some Binomial Fibonacci Identities

  • Chapter
Applications of Fibonacci Numbers

Abstract

Interest in binomial Fibonacci identities goes back at least to E. Lucas [8] who obtained formulas like

$$\sum\limits_{i = 0}^r {\left( {_i^r} \right)} {F_{n + 1 = }}{F_{n + 2r}} and \sum\limits_{i = 0}^r {\left( {_i^r} \right){L_{n + i}}} = {L_{n + 2r}}$$
((1))

where F n and L n represent, respectively, the nth Fibonacci and Lucas numbers. Indeed, Lucas used the Binet formulas and the characteristic equation x2 = x + 1 to argue that equations (1) can be written in the form

$${F^n}{\left( {F + 1} \right)^r} = {F^n}{\left( {{F^2}} \right)^r} = {F^{n + 2r}}$$
$${L^n}{\left( {L + 1} \right)^r} = {L^n}{\left( {{L^2}} \right)^r} = {L^{n + 2r}}$$
((1′))

where, after simplification, the powers of F and L are replaced by the appropriately subscripted F’s and L’s. This same approach for other identities was investigated further by Hoggatt and Lind in [4] and Ruggles [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergum, G. E. and Hoggatt, V. E. Jr. “Sums and Products of Recurring Sequences.” The Fibonacci Quarterly 13 (1975): pp. 115–120.

    MathSciNet  MATH  Google Scholar 

  2. Hoggatt, V. E. Jr. and Bicknell, M. “Some New Fibonacci Identities.” The Fibonacci Quarterly 2 (1964): pp. 29–32.

    MathSciNet  Google Scholar 

  3. Hoggatt, V. E. Jr. and Bicknell, M. “Fourth Power Identities From Pascal’s Triangle.” The Fibonacci Quarterly 2 (1964): pp. 261–266.

    MathSciNet  MATH  Google Scholar 

  4. Hoggatt, V. E. Jr. and Lind, D. A. “Symbolic Substitutions into Fibonacci Polynomials.” The Fibonacci Quarterly 6 (1968): pp. 55–74.

    MathSciNet  Google Scholar 

  5. Horadam, A. F. “Basic Properties of a Certain Basic Sequence of Numbers.” The Fibonacci Quarterly 3 (1965): pp. 161–176.

    MathSciNet  MATH  Google Scholar 

  6. Long, C. T. “On a Fibonacci Arithmetical Trick.” The Fibonacci Quarterly 23 (1985): pp. 221–231.

    MathSciNet  MATH  Google Scholar 

  7. Long, C. T. “Discovering Fibonacci Identities.” The Fibonacci Quarterly 24 (1986): pp. 160–167.

    MathSciNet  MATH  Google Scholar 

  8. Lucas, E. “Théorie des Fonctions Numérique Simplement Périodques.” Am. J. Math. 1 (1978): pp. 184–240, 189–321.

    Article  MathSciNet  Google Scholar 

  9. Ruggles, D. “Some Fibonacci Results Using Fibonacci-Type Sequences.” The Fibonacci Quarterly 1 (1963): pp. 75–80.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Long, C.T. (1990). Some Binomial Fibonacci Identities. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1910-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1910-5_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7352-3

  • Online ISBN: 978-94-009-1910-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics