Skip to main content

Diophantine Representation of Fibonacci Numbers Over Natural Numbers

  • Chapter

Abstract

The sequence of Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, 13, 21, …, defined by F0 = 0, F1 = 1, F n+2 = F n + F n+1, played an important role in the solution of one of the Hilbert Problems. The Fibonacci sequence was used in 1970 by the Russian mathematician Y.V. Matijasevič to solve the Tenth Problem of Hilbert. The Tenth Problem of Hilbert was the problem of existence of an algorithm for deciding solvability of Diophantine equations. Matijasevič [8] [9] made use of divisibility properties of the Fibonacci sequence to prove that every recursively enumerable set is Diophantine. This solved Hilbert’s Tenth Problem in the negative.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoggatt, V. E. Jr. “Some More Fibonacci Diophantine Equations.” The Fibonacci Quarterly Vol. 9 (1971): pp. 437 and 448.

    Google Scholar 

  2. Jones, J.P. “Diophantine Representation of the Set of Fibonacci Numbers.” The Fibonacci Quarterly, Vol. 13 (1975): pp. 84–88. MR 52 3035.

    Google Scholar 

  3. Jones, J.P. “Diophantine Representation of the Set of Lucas Numbers.” The Fibonacci Quarterly, Vol. 14 (1976): p. 134. MR 53 2818.

    Google Scholar 

  4. Jones, J.P., Sato, D., Wada, H. and Wiens, D. “Diophantine Representation of the Set of Prime Numbers.” American Mathematical Monthly, Vol. 83 (1976), pp. 449–464. MR 54 2615.

    Article  MathSciNet  Google Scholar 

  5. Kiss, P. “Diophantine Representation of Generalized Fibonacci Numbers.” Elementa der Mathematik, Birkhauser Verlag, Basel, Switzerland, Vol. 34–6 (1979): pp. 129–132, MR81g 10021.

    Google Scholar 

  6. Kiss, P. and Varnai, F. “On Generalized Pell Numbers.” Math. Seminar Notes (Kobe University, Japan), Vol. 6 (1978): pp. 259–267.

    MathSciNet  MATH  Google Scholar 

  7. Lucas, E. Nouv. Corresp. Math., Vol. 2 (1876): pp. 201–206.

    Google Scholar 

  8. Matijasevič, Y.V. “Enumerable Sets are Diophantine.” Doklady Akademii Nauk, Vol. 191 (1970): pp 279–282. English translation: Soviet Math. Doklady Vol. (1970): pp. 354–358. MR 41 3390.

    Google Scholar 

  9. Matijasevič, Y.V. “Diophantine Representation of Enumerable Predicates.” Izvestija Akademii Nauk SSSR, Serija Matematič eskaya, Vol. 35 (1971): pp. 3–30. Mathematics of the USSR-Izvestija, Vol. 5 (1971): pp. 1–28. MR 43 54.

    Google Scholar 

  10. Putnam, H. “An Unsolvable Problem in Number Theory.” Jour. Symbolic Logic Vol. 25 (1960): pp. 220–232.

    Article  MathSciNet  Google Scholar 

  11. Vorobsev, N.N. Fibonacci Numbers, Moscow, Nauka, 1984. ( Russian).

    Google Scholar 

  12. Wasteels, J. Mathesis (3), 2 (1902), pp. 60–62. Cf. L.E. Dickson, History of the Theory of Numbers, Vol. I, 1919, Chelsea Publishing Co., N.Y. p. 405.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Jones, J.P. (1990). Diophantine Representation of Fibonacci Numbers Over Natural Numbers. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1910-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1910-5_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7352-3

  • Online ISBN: 978-94-009-1910-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics