Skip to main content

Quantum Transport Models for Semiconductors

  • Chapter
Applied and Industrial Mathematics

Part of the book series: Mathematics and Its Applications ((MAIA,volume 56))

Abstract

During the last decade the simulation of semiconductor devices became a valuable and indispensable tool for the design of new devices. In this paper we present and analyze new simulation models which also account for quantum effects.

The authors acknowledge support from the Austrian “Fonds zur Förderung der wissenschaftlichen Forschung” under Grant No. P6771.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Tatarskii, The Wigner representation of quantum mechanics, Sov. Phys. Usp. 26, 311–327 (1983).

    Article  MathSciNet  Google Scholar 

  2. P.A. Markowich, On the equivalence of the Schrödinger and the quantum Liouville equation, Math. Meth. Appl. Sci. 11, 459–469 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  3. P.A. Markowich and C. Ringhofer, An analysis of the quantum Liouville equation, ZAMM 69, 121–127 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Arnold and H. Steinrück, The ‘electromagnetic’ Wigner equation for an electron with spin, ZAMP 40, No. 6, 793–815 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Steinrück, The one dimensional Wigner-Poisson problem and its relation to the Schrödinger-Poisson problem, to appear in SIAM (1990).

    Google Scholar 

  6. A. Arnold and F. Nier, The two-dimensional Wigner-Poisson problem for an electron gas in the charge neutral case, manuscript (1990).

    Google Scholar 

  7. F. Brezzi and P.A. Markowich, The three-dimensional Wigner-Poisson problem: Existence, uniqueness and approximation, submitted (1989).

    Google Scholar 

  8. A. Arnold, P. Degond, P.A. Markowich and H. Steinrück, The Wigner-Poisson problem in a crystal, Appl. Math. Lett. 2, No. 2, 187–191 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Steinrück, The Wigner-Poisson problem in a crystal: Existence, uniqueness, semiclassical limit in the one dimensional case, to appear in ZAMM (1990).

    Google Scholar 

  10. P. Degond and P.A. Markowich, A mathematical analysis of quantum transport in three dimensional crystals, to appear in Annali di Mat. Pura ed Appl. (1990).

    Google Scholar 

  11. P. Degond and P. A. Markowich, A quantum-transport model for semiconductors: the Wigner-Poisson problem on a bounded Brillouin zone, to appear in M2AN (1990).

    Google Scholar 

  12. U. Ravaioli, M.A. Osman, W. Pötz, N. Kluksdahl and D.K. Ferry, Investigation of ballistic transport through resonant-tunneling quantum wells using Wigner function approach, Physica 134B, 36–40 (1985).

    Google Scholar 

  13. W.R. Frensley, Wigner function model of a resonant-tunneling semiconductor device, Phys. Rev. B 36, 1570–1580 (1987).

    Article  Google Scholar 

  14. C. Ringhofer, A spectral method for the numerical simulation of quantum tunneling phenomena, Technical Report No. 115, Arizona State University (1988).

    Google Scholar 

  15. N. D. SUH, L’étude des structures coherentes dans l’éspace des phases du plasma unidimensionnel électrostatique: aspect classique et quantique, thesis at University of Orleans (1989).

    Google Scholar 

  16. A. Arnold and F. Nier, Numerical analysis of the deterministic particle method applied to the Wigner equation, manuscript (1990).

    Google Scholar 

  17. G. Grimvall, The electron-phonon interaction in metals, North Holland, Amsterdam - New York - Oxford (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Arnold, A., Markowich, P.A. (1991). Quantum Transport Models for Semiconductors. In: Spigler, R. (eds) Applied and Industrial Mathematics. Mathematics and Its Applications, vol 56. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1908-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1908-2_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7351-6

  • Online ISBN: 978-94-009-1908-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics